Skip to main content

Advertisement

Log in

Current Treatment Options in Neurology—SMA Therapeutics

  • Neuromuscular Disorders (C Fournier, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

In this review, we discuss the clinical and genetic features of 5q spinal muscular atrophy and highlight approved and upcoming therapies.

Recent findings

We emphasize that multidisciplinary care has been a key component of the improved quality and length of life seen in these individuals in the past decade. We discuss the evidence leading to the approval of nusinersen and the evidence leading to the anticipated approval of onasemnogene abeparvovec-xioi. Additional clinical therapies that are on the horizon are discussed and the importance of continued multidisciplinary care even after treatment is emphasized.

Summary

The pursuit of therapies for spinal muscular atrophy is becoming a success story and continued development of biomarkers will allow for more informed therapeutic decision making and eventual cost-effective utilization of available therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pearn JH. The gene frequency of acute Werdnig-Hoffmann disease (SMA type 1). A total population survey in North-East England. J Med Genet. 1973;10(3):260–5.

    Article  CAS  Google Scholar 

  2. Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20(1):27–32. https://doi.org/10.1038/ejhg.2011.134.

    Article  PubMed  Google Scholar 

  3. Beattie CE, Kolb SJ. Spinal muscular atrophy: selective motor neuron loss and global defect in the assembly of ribonucleoproteins. Brain Res. 2018;1693(Pt A:92–7. https://doi.org/10.1016/j.brainres.2018.02.022.

    Article  CAS  PubMed  Google Scholar 

  4. Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883–91. https://doi.org/10.1002/ana.25101. A longitudinal, prospective description of the natural history of type 1 spinal muscular atrophy.

    Article  CAS  Google Scholar 

  5. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–65.

    Article  CAS  Google Scholar 

  6. Zerres K, Rudnik-Schoneborn S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995;52(5):518–23.

    Article  CAS  Google Scholar 

  7. Russman BS. Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol. 2007;22(8):946–51. https://doi.org/10.1177/0883073807305673.

    Article  PubMed  Google Scholar 

  8. Munsat TL, Skerry L, Korf B, Pober B, Schapira Y, Gascon GG, et al. Phenotypic heterogeneity of spinal muscular atrophy mapping to chromosome 5q11.2-13.3 (SMA 5q). Neurology. 1990;40(12):1831–6.

    Article  CAS  Google Scholar 

  9. Mailman MD, Heinz JW, Papp AC, Snyder PJ, Sedra MS, Wirth B, et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002;4(1):20–6. https://doi.org/10.1097/00125817-200201000-00004.

    Article  CAS  Google Scholar 

  10. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85(3):408–13. https://doi.org/10.1016/j.ajhg.2009.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. CureSMA. New York to implement newborn screening for SMA October 1st. 2018.

  12. Glascock J, Sampson J, Haidet-Phillips A, Connolly A, Darras B, Day J, et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis. 2018;5(2):145–58. https://doi.org/10.3233/JND-180304.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol. 2011;68(8):979–84. https://doi.org/10.1001/archneurol.2011.74.

    Article  PubMed  Google Scholar 

  14. Finkel RS, Mercuri E, Meyer OH, Simonds AK, Schroth MK, Graham RJ, et al. Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018;28(3):197–207. https://doi.org/10.1016/j.nmd.2017.11.004.

    Article  PubMed  Google Scholar 

  15. Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M, et al. Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103–15. https://doi.org/10.1016/j.nmd.2017.11.005.

    Article  PubMed  Google Scholar 

  16. Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810–7. https://doi.org/10.1212/WNL.0000000000000741.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017–26. https://doi.org/10.1016/S0140-6736(16)31408-8.

    Article  CAS  PubMed  Google Scholar 

  18. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32. https://doi.org/10.1056/NEJMoa1702752. Prospective, randomized, double-blind study showing the efficacy of nusinersen for the treatment of type 1 spinal muscular atrophy.

    Article  CAS  Google Scholar 

  19. Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–35. https://doi.org/10.1056/NEJMoa1710504.

    Article  CAS  PubMed  Google Scholar 

  20. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016;86(10):890–7. https://doi.org/10.1212/WNL.0000000000002445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bielsky AR, Fuhr PG, Parsons JA, Yaster M. A retrospective cohort study of children with spinal muscular atrophy type 2 receiving anesthesia for intrathecal administration of nusinersen. Paediatr Anaesth. 2018;28(12):1105–8. https://doi.org/10.1111/pan.13500.

    Article  PubMed  Google Scholar 

  22. Sansone VA, Albamonte E, Salmin F, Casiraghi J, Pirola A, Bettinelli M, et al. Intrathecal nusinersen treatment for SMA in a dedicated neuromuscular clinic: an example of multidisciplinary and integrated care. Neurol Sci. 2018;40:327–32. https://doi.org/10.1007/s10072-018-3622-9.

    Article  PubMed  Google Scholar 

  23. Wurster CD, Winter B, Wollinsky K, Ludolph AC, Uzelac Z, Witzel S, et al. Intrathecal administration of nusinersen in adolescent and adult SMA type 2 and 3 patients. J Neurol. 2018;266:183–94. https://doi.org/10.1007/s00415-018-9124-0.

    Article  PubMed  Google Scholar 

  24. Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS, et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat. 2014;8:42. https://doi.org/10.3389/fnana.2014.00042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28(3):271–4. https://doi.org/10.1038/nbt.1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duque SI, Arnold WD, Odermatt P, Li X, Porensky PN, Schmelzer L, et al. A large animal model of spinal muscular atrophy and correction of phenotype. Ann Neurol. 2015;77(3):399–414. https://doi.org/10.1002/ana.24332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther. 2015;23(3):477–87. https://doi.org/10.1038/mt.2014.210.

    Article  CAS  PubMed  Google Scholar 

  28. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. https://doi.org/10.1056/NEJMoa1706198. Prospective study showing the safety and efficacy of gene replacement therapy in type 1 spinal muscular atrophy.

    Article  CAS  Google Scholar 

  29. Al-Zaidy S, Pickard AS, Kotha K, Alfano LN, Lowes L, Paul G, et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol. 2018. https://doi.org/10.1002/ppul.24203.

  30. Ayuso E, Blouin V, Lock M, McGorray S, Leon X, Alvira MR, et al. Manufacturing and characterization of a recombinant adeno-associated virus type 8 reference standard material. Hum Gene Ther. 2014;25(11):977–87. https://doi.org/10.1089/hum.2014.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z, et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345(6197):688–93. https://doi.org/10.1126/science.1250127.

    Article  CAS  PubMed  Google Scholar 

  32. Sivaramakrishnan M, McCarthy KD, Campagne S, Huber S, Meier S, Augustin A, et al. Binding to SMN2 pre- mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun. 2017;8(1):1476. https://doi.org/10.1038/s41467-017-01559-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol. 2015;11(7):511–7. https://doi.org/10.1038/nchembio.1837.

    Article  CAS  PubMed  Google Scholar 

  34. F. Hoffman-La Roche P. Update on clinical development of RG7800. 2015.

  35. Novartis. Novartis Releases Update on LMI070 (Branaplam) Clinical Trial. 2017.

  36. Bordet T, Berna P, Abitbol JL, Pruss RM. Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals (Basel). 2010;3(2):345–68. https://doi.org/10.3390/ph3020345.

    Article  CAS  Google Scholar 

  37. Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, et al. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo- controlled phase 2 trial. Lancet Neurol. 2017;16(7):513–22. https://doi.org/10.1016/S1474-4422(17)30085-6.

    Article  CAS  PubMed  Google Scholar 

  38. Andrews JA, Miller TM, Vijayakumar V, Stoltz R, James JK, Meng L, et al. CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve. 2018;57(5):729–34. https://doi.org/10.1002/mus.26017.

    Article  CAS  PubMed  Google Scholar 

  39. Yu Y, Zhang P, Han N, Kou Y, Yin X, Jiang B. Collateral development and spinal motor reorganization after nerve injury and repair. Am J Transl Res. 2016;8(7):2897–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Senol MG, Kaplan C, Ozdag F, Saracoglu M. How long does denervation take in poliomyelitis? Or is it a lifetime? J Neurosci Rural Pract. 2017;8(4):511–5. https://doi.org/10.4103/jnrp.jnrp_173_17.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol. 2016;3(2):132–45. https://doi.org/10.1002/acn3.283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arnold WD, Rutkove S, Simard L, Kolb SJ. Development and testing of biomarkers in spinal muscular atrophy. In: Sumner CJ, Paushkin S, Ping C-P, editors. Spinal muscular atrophy: disease mechanisms and therapy. San Diego: Academic Press; 2017. p. 383–97.

    Chapter  Google Scholar 

  43. Rossi D, Volanti P, Brambilla L, Colletti T, Spataro R, La Bella V. CSF neurofilament proteins as diagnostic and prognostic biomarkers for amyotrophic lateral sclerosis. J Neurol. 2018;265(3):510–21. https://doi.org/10.1007/s00415-017-8730-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jill Jareki, PhD, and Jackie Glascock, PhD, from CureSMA for providing us with an updated list of the SMA Therapeutic Pipeline for use in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Kolb MD, PhD.

Ethics declarations

Conflict of Interest

Stephen J. Kolb reports consulting fees from AveXis, Biogen Idec, and Genentech outside the submitted work. Megan A. Waldrop reports personal fees from The France Foundation outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuromuscular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldrop, M.A., Kolb, S.J. Current Treatment Options in Neurology—SMA Therapeutics. Curr Treat Options Neurol 21, 25 (2019). https://doi.org/10.1007/s11940-019-0568-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-019-0568-z

Keywords

Navigation