Skip to main content

Advertisement

Log in

How Treatment Monitoring Is Influencing Treatment Decisions in Glioblastomas

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion Statement

Glioblastoma (GBM), the most common malignant primary tumor in adults, carries a dismal prognosis with an average median survival of 14–16 months. The current standard of care for newly diagnosed GBM consists of maximal safe resection followed by fractionated radiotherapy combined with concurrent temozolomide and 6 to 12 cycles of adjuvant temozolomide. The determination of treatment response and clinical decision-making in the treatment of GBM depends on accurate radiographic assessment. Differentiating treatment response from tumor progression is challenging and combines long-term follow-up using standard MRI, with assessing clinical status and corticosteroid dependency. At progression, bevacizumab is the mainstay of treatment. Incorporation of antiangiogenic therapies leads to rapid blood-brain barrier normalization with remarkable radiographic response often not accompanied by the expected survival benefit, further complicating imaging assessment. Improved radiographic interpretation criteria, such as the Response Assessment in Neuro-Oncology (RANO) criteria, incorporate non-enhancing disease but still fall short of definitely distinguishing tumor progression, pseudoresponse, and pseudoprogression. With new evolving treatment modalities for this devastating disease, advanced imaging modalities are increasingly becoming part of routine clinical care in a field where neuroimaging has such essential role in guiding treatment decisions and defining clinical trial eligibility and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16 Suppl 4:iv1–63.

    Article  PubMed  Google Scholar 

  2. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.

    Article  PubMed  CAS  Google Scholar 

  3. Ostrom QT et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16(7):896–913.

    Article  PubMed  CAS  Google Scholar 

  4. Ostrom QT et al. Epidemiology of gliomas. Cancer Treat Res. 2015;163:1–14.

    Article  PubMed  Google Scholar 

  5. Stupp R et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  PubMed  CAS  Google Scholar 

  6. Brennan CW et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. One of the first detailed reports of the somatic genomic landscape of GBM at the base of molecular profiling currently used clinically.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Wen PYC, Timothy F, Ellingson BM, Reardon DA, Fine HA, Abrey L, et al. Report of the Jumpstarting Brain Tumor Drug Development 5 Coalition and FDA clinical trials neuroimaging endpoint workshop (January 30, 2014, Bethesda MD). Neuro Oncol. 2014;0:1–12. An excellent summary of the radiologic and trial end-point barriers to improvement on clinical trial design and outcomes. Opens the discussion for improvement.

    Article  Google Scholar 

  8. Bauchet L et al. Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. Neuro Oncol. 2010;12(7):725–35.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lacroix M et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.

    Article  PubMed  CAS  Google Scholar 

  10. Woodworth GF et al. Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol. 2014;4:126.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schiff D, et al. Medical management of brain tumors and the sequelae of treatment. Neuro Oncol. 2014.

  12. Barani IJ, Larson DA. Radiation therapy of glioblastoma. Cancer Treat Res. 2015;163:49–73.

    Article  PubMed  Google Scholar 

  13. Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002;359(9311):1011–8.

    Article  PubMed  CAS  Google Scholar 

  14. Wen PY et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  15. Hasselbalch B et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol. 2010;12(5):508–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Stupp R et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  17. Wefel JS et al. Neurocognitive function in patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2011;13(6):660–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Taal W et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15(9):943–53. Although awaiting validation in a phase III trial, currently often used clinically as standard of care outside the clinical trial setting at GBM recurrance.

    Article  PubMed  CAS  Google Scholar 

  19. Keles GE, Anderson B, Berger MS. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol. 1999;52(4):371–9.

    Article  PubMed  CAS  Google Scholar 

  20. Pillai JJ. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol. 2010;31(2):219–25.

    Article  PubMed  CAS  Google Scholar 

  21. Tate MC. Surgery for gliomas. Cancer Treat Res. 2015;163:31–47.

    Article  PubMed  Google Scholar 

  22. Bloch O et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg. 2012;117(6):1032–8.

    Article  PubMed  Google Scholar 

  23. Weller M et al. Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol. 2013;15(1):4–27.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Albert FK et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34(1):45–60. discussion 60–1.

    Article  PubMed  CAS  Google Scholar 

  25. Forsting M et al. Extirpation of glioblastomas: MR and CT follow-up of residual tumor and regrowth patterns. AJNR Am J Neuroradiol. 1993;14(1):77–87.

    PubMed  CAS  Google Scholar 

  26. Pirzkall A et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol. 2009;11(6):842–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Vogelbaum MA et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery. 2012;70(1):234–43. discussion 243–4.

    Article  PubMed  Google Scholar 

  28. Hegi ME et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  PubMed  CAS  Google Scholar 

  29. Malmstrom A et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–26. One of the few prospective studies of high grade glioma treatment in the elderly.

    Article  PubMed  CAS  Google Scholar 

  30. Wick W et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012;13(7):707–15. One of the few prospective studies of high grade glioma treatment in the elderly.

    Article  PubMed  CAS  Google Scholar 

  31. Chamberlain MC. Glioblastoma in the elderly. Cancer Treat Res. 2015;163:159–70.

    Article  PubMed  Google Scholar 

  32. Keime-Guibert F et al. Radiotherapy for glioblastoma in the elderly. N Engl J Med. 2007;356(15):1527–35.

    Article  PubMed  CAS  Google Scholar 

  33. Roa W et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol. 2004;22(9):1583–8.

    Article  PubMed  CAS  Google Scholar 

  34. Nabors LB. The role of bevacizumab in glioblastoma. J Natl Compr Canc Netw. 2014;12(9):1201–2.

    PubMed  Google Scholar 

  35. Niendorf HP et al. Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. AJNR Am J Neuroradiol. 1987;8(5):803–15.

    PubMed  CAS  Google Scholar 

  36. Brandsma D et al. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9(5):453–61.

    Article  PubMed  Google Scholar 

  37. Chinot OL, Wick W, Cloughesy T. Bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(21):2049.

    Article  PubMed  Google Scholar 

  38. Valtonen S et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery. 1997;41(1):44–8. discussion 48–9.

    Article  PubMed  CAS  Google Scholar 

  39. Westphal M et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5(2):79–88.

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Westphal M et al. Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien). 2006;148(3):269–75. discussion 275.

    Article  CAS  Google Scholar 

  41. Brem H et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Polym brain Tumor Treat Group Lancet. 1995;345(8956):1008–12.

    CAS  Google Scholar 

  42. Subach BR et al. Morbidity and survival after 1,3-bis (2-chloroethyl)-1-nitrosourea wafer implantation for recurrent glioblastoma: a retrospective case-matched cohort series. Neurosurgery. 1999;45(1):17–22. discussion 22–3.

    Article  PubMed  CAS  Google Scholar 

  43. Della Puppa A et al. The first 3 months after BCNU wafers implantation in high-grade glioma patients: clinical and radiological considerations on a clinical series. Acta Neurochir (Wien). 2010;152(11):1923–31.

    Article  Google Scholar 

  44. Ulmer S et al. Temporal changes in magnetic resonance imaging characteristics of Gliadel wafers and of the adjacent brain parenchyma. Neuro Oncol. 2012;14(4):482–90.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Colen RR et al. Magnetic resonance imaging appearance and changes on intracavitary Gliadel wafer placement: A pilot study. World J Radiol. 2011;3(11):266–72.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Nasseri M et al. Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol. 2014;16(8):1146–54.

    Article  PubMed  CAS  Google Scholar 

  47. Ellingson BM et al. Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. Radiology. 2014;271(1):200–10. Description of an improved tumor delineation method that is easily accessible to practioners at this time.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Barajas Jr RF et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253(2):486–96.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hu LS et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.

    Article  PubMed  CAS  Google Scholar 

  50. Asao C et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26(6):1455–60.

    PubMed  Google Scholar 

  51. Hein PA et al. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25(2):201–9.

    PubMed  Google Scholar 

  52. Sundgren PC et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24(9):1131–42.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang H et al. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol. 2014;83(12):2181–9.

    Article  PubMed  Google Scholar 

  54. Geer CP et al. Does MR perfusion imaging impact management decisions for patients with brain tumors? A prospective study. AJNR Am J Neuroradiol. 2012;33(3):556–62.

    Article  PubMed  CAS  Google Scholar 

  55. Baek HJ et al. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology. 2012;264(3):834–43.

    Article  PubMed  Google Scholar 

  56. Hu LS et al. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol. 2012;14(7):919–30.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Gomez-Rio M et al. Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging. 2008;35(5):966–75.

    Article  PubMed  Google Scholar 

  58. Kim YH et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg. 2010;112(9):758–65.

    Article  PubMed  Google Scholar 

  59. Chung JK et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(2):176–82.

    Article  PubMed  CAS  Google Scholar 

  60. Li DL et al. (1) (1) C-methionine and (1) (8) F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas. Chin Med J (Engl). 2012;125(1):91–6.

    CAS  Google Scholar 

  61. Van Laere K et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging. 2005;32(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  62. Chen W et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904–11.

    PubMed  CAS  Google Scholar 

  63. Galldiks N et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med. 2012;53(7):1048–57.

    Article  PubMed  CAS  Google Scholar 

  64. Oborski MJ et al. Assessment of early therapy response with 18F-FLT PET in glioblastoma multiforme. Clin Nucl Med. 2014;39(10):e431–2.

    Article  PubMed  Google Scholar 

  65. Piroth MD et al. Prognostic value of early [18F] fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;80(1):176–84.

    Article  PubMed  Google Scholar 

  66. Galldiks N, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[F] fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2014.

  67. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  PubMed  CAS  Google Scholar 

  69. Friedman HS et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.

    Article  PubMed  CAS  Google Scholar 

  70. Kreisl TN et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Venur VA, Peereboom DM, Ahluwalia MS. Current medical treatment of glioblastoma. Cancer Treat Res. 2015;163:103–15.

    Article  PubMed  Google Scholar 

  72. Batchelor TT et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Batchelor TT et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28(17):2817–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Norden AD et al. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol. 2009;92(2):149–55.

    Article  PubMed  CAS  Google Scholar 

  75. Nowosielski M et al. Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology. 2014;82(19):1684–92. Excellent description of effects of antiangiogenic thearpy on radiographic appearance of GBM and correlation of non-enhancing tumor burden with outcome.

    Article  PubMed  CAS  Google Scholar 

  76. Reardon DA, Nayak L, DeAngelis LM, Wen PY, Brandes AA, Soffietti R, et al. The Neurologic Assessment in Neuro-Oncology (NANO) Scale: A tool to assess neurologic function for integration in the Radiologic Assessment in Neuro-Oncology (RANO) criteria. Neuro Oncol. 2014;16 suppl 2:ii76.

    Article  Google Scholar 

  77. van den Bent MJ et al. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s criteria. J Clin Oncol. 2009;27(18):2905–8.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Huang RY, Rahman R, Pope WB, Ellingson BM, Anderson K, Felten SJ, Ballman KV, Wu W, Nayak L, Lee EQ, Abrey LE, Galanis E, Reardon DA, Cloughesy TF, Wen PY, Validation of rano criteria: Contribution of T2/FLAIR assessment in patients with recurrent glioblastoma treated with bevacizumab. Journal of Clinical Oncology. 2014 ASCO Annual Meeting Abstracts. 2014;32(15_suppl (May20 Supplement); 2014:2007).

  79. Radbruch A et al. Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology criteria. Neuro Oncol. 2012;14(2):222–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Boxerman JL et al. Early post-bevacizumab progression on contrast-enhanced MRI as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 Central Reader Study. Neuro Oncol. 2013;15(7):945–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Kanaly CW et al. A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS One. 2011;6(1):e16031.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Melhem ER, Mehta NR. Dynamic T1-weighted spin-echo MR imaging: the role of digital subtraction in the demonstration of enhancing brain lesions. J Magn Reson Imaging. 1999;9(4):503–8.

    Article  PubMed  CAS  Google Scholar 

  83. Hattingen E et al. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival. Neuro Oncol. 2013;15(10):1395–404.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Gerstner ER et al. Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro Oncol. 2010;12(5):466–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Kirson ED et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci U S A. 2007;104(24):10152–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Stupp R et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192–202.

    Article  PubMed  Google Scholar 

  87. Stupp R, Wong E, Scott C, Taillibert S, Kanner A, Kesari S, et al. Interim analysis of the EF-14 trial: a prospective, multi-center trial of NovoTTF-100A together with temozolomide compared to temozolomide alone in patients with newly diagnosed GBM. Neuro Oncol. 2014;16 suppl 5:v167. NT-40.

    Article  Google Scholar 

  88. Hodi FS et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Kantoff PW et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  PubMed  CAS  Google Scholar 

  90. Zeng J et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Wolchok JD et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  PubMed  CAS  Google Scholar 

  92. Pollack IF et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol. 2014;32(19):2050–8.

    Article  PubMed  CAS  Google Scholar 

  93. Floeth FW et al. Comparative follow-up of enhancement phenomena with MRI and proton MR spectroscopic imaging after intralesional immunotherapy in glioblastoma—report of two exceptional cases. Zentralbl Neurochir. 2002;63(1):23–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Martha R. Neagu, Raymond Y. Huang, David A. Reardon, and Patrick Y. Wen declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Y. Huang MD, PhD.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neagu, M.R., Huang, R.Y., Reardon, D.A. et al. How Treatment Monitoring Is Influencing Treatment Decisions in Glioblastomas. Curr Treat Options Neurol 17, 15 (2015). https://doi.org/10.1007/s11940-015-0343-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-015-0343-8

Keywords

Navigation