Skip to main content

Advertisement

Log in

In search of a treatment for radiation-induced optic neuropathy

  • Neurologic Ophthalmology and Otology (RK Shin and D Gold, Section Editors)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Radiation-induced optic neuropathy (RON) is an iatrogenic complication that causes severe, irreversible vision loss in one or both eyes within the months to years following radiation therapy. Posterior RON is a rare but devastating toxicity of radiation applied to the visual pathways to treat paranasal sinus and skull base tumors. Anterior RON is an unavoidable consequence of proton beam irradiation or ophthalmic plaque treatment of orbital, choroidal, or retinal tumors. Various treatments aimed at stabilizing and ideally reversing vision loss have been investigated but only in small cases series. Systemic corticosteroids and anticoagulants, which are moderately effective when used for cerebral radiation necrosis, have shown no signs of benefit for RON. Hyperbaric oxygen therapy may promote short-term, partial recovery of vision in select patients, especially at partial pressures of at least 2.4 atm and when administered early after symptom onset. Reversal of visual deficits through treatment with systemic bevacizumab has been reported, but until controlled studies are performed, the side effect profile of stroke and myocardial infarction should limit its use in a population with predisposing cardiovascular risk factors. Intravitreal bevacizumab has shown promising results in patients with anterior RON, but repeated, long-term injections are required for sustained effect. As no intervention has been clearly shown to halt or reverse vision loss, larger prospective studies are needed to validate observed benefits for any of the treatments that have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lessell S. Friendly fire: neurogenic visual loss from radiation therapy. J Neuroophthalmol. 2004;24(3):243–50.

    Article  PubMed  Google Scholar 

  2. Roden D, Bosley TM, Fowble B, et al. Delayed radiation injury to the retrobulbar optic nerves and chiasm. Ophthalmology. 1990;97(3):346–51.

    Article  CAS  PubMed  Google Scholar 

  3. Riechardt AI, Cordini D, Dobner B, et al. Proton beam therapy of parapapillary choroidal melanoma. Am J Ophthalmol. 2014;157(6):1258–65.

    Article  PubMed  Google Scholar 

  4. Semenova E, Finger PT. Palladium-103 plaque radiation therapy for American Joint Committee on cancer T3- and T4-staged choroidal melanomas. JAMA Ophthalmol. 2014;132(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  5. Kline LB, Kim JY, Ceballos R. Radiation optic neuropathy. Ophthalmology. 1985;92(8):1118–26.

    Article  CAS  PubMed  Google Scholar 

  6. Guy J, Schatz NJ. Hyperbaric oxygen in the treatment of radiation-induced optic neuropathy. Ophthalmology. 1986;93(8):1083–8.

    Article  CAS  PubMed  Google Scholar 

  7. Borruat FX, Schatz NJ, Glaser JS, Matos L, Feuer W. Radiation optic neuropathy: report of cases, role of hyperbaric oxygen therapy, and literature review. Neuroophthalmology. 1996;16(4):255–66.

    Article  Google Scholar 

  8. Jiang GL, Tucker SL, Guttenberger R, et al. Radiation-induced injury to the visual pathway. Radiother Oncol. 1994;30(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  9. Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30(4):755–63.

    Article  CAS  PubMed  Google Scholar 

  10. Levy RL, Miller NR. Hyperbaric oxygen therapy for radiation-induced optic neuropathy. Ann Acad Med Singapore. 2006;35(3):151–7.

    PubMed  Google Scholar 

  11. Aristizabal S, Caldwell WL, Avila J. The relationship of time dose fractionation factors to complications in the treatment of pituitary tumours by irradiation. Int J Radiat Oncol Biol Phys. 1977;2(7–8):667–73.

    Article  CAS  PubMed  Google Scholar 

  12. Shrieve DC, Hazard L, Boucher K, Jensen RL. Dose fractionation in stereotactic radiotherapy for paraseller meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg. 2004;101 Suppl 3:390–5.

    PubMed  Google Scholar 

  13. Carvounis PE, Katz B. Gamma knife radiosurgery in neuroophthalmology. Curr Opin Ophthalmol. 2003;14(6):317–24.

    Article  PubMed  Google Scholar 

  14. Leavitt JA, Stafford SL, Link MJ, Pollock BE. Long-term evaluation of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2013;87(3):524–7.

    Article  PubMed  Google Scholar 

  15. Skeie BS, Enger PO, Skeie GO, Thorsen F, Pedersen PH. Gamma knife surgery of meningiomas involving the cavernous sinus: long-term follow-up of 100 patients. Neurosurgery. 2010;66(4):661–8.

    Article  PubMed  Google Scholar 

  16. Hasegawa T, Kobayashi T, Kida Y. Tolerance of the optic apparatus in single-fraction irradiation using stereotactic radiosurgery: evaluation in 100 patients with craniopharyngioma. Neurosurgery. 2010;66(4):688–94.

    Article  PubMed  Google Scholar 

  17. Boström JP, Meyer A, Pintea B, et al. Risk-adapted single or fractionated stereotactic high-precision radiotherapy in a pooled series of nonfunctioning pituitary adenomas: high local control and low toxicity. Strahlenther Onkol. 2014.

  18. Demizu Y, Murakami M, Miyawaki D, et al. Analysis of vision loss caused by radiation-induced optic neuropathy after particle therapy for head-and-neck and skull-base tumors adjacent to optic nerves. Int J Radiat Oncol Biol Phys. 2009;75(5):1487–92.

    Article  PubMed  Google Scholar 

  19. Chacko JG, Schatz NJ, Glaser JS. Delayed optic nerve complications after proton beam irradiation. Ann Ophthalmol (Skokie). 2008;40(3–4):166–70.

    Google Scholar 

  20. Siddiqui JD, Loeffler JS, Murphy MA. Radiation optic neuropathy after proton beam therapy for optic nerve sheath meningioma. J Neuroophthalmol. 2013;33(2):165–8.

    Article  PubMed  Google Scholar 

  21. Kim IK, Lane AM, Egan KM, Munzenrider J, Gragoudas ES. Natural history of radiation papillopathy after proton beam irradiation of parapapillary melanoma. Ophthalmology. 2010;117(8):1617–22.

    Article  PubMed  Google Scholar 

  22. Lommatzsch PK, Alberti W, Lommatzsch R, Rohrwacher F. Radiation effects on the optic nerve observed after brachytherapy of choroidal melanomas with 106Ru/106Rh plaques. Graefes Arch Clin Exp Ophthalmol. 1994;232(8):482–7.

    Article  CAS  PubMed  Google Scholar 

  23. Levin LA, Gragoudas ES, Lessell S. Endothelial cell loss in irradiated optic nerves. Ophthalmology. 2000;107:370–4.

    Article  CAS  PubMed  Google Scholar 

  24. Small W, Woloschak GE. Radiation toxicity: a practical guide. New York: Springer Science + Business Media; 2006. p. 16–7.

    Book  Google Scholar 

  25. Genc M, Genc E, Gen BO, Kiresi DA. Significant response of radiation induced CNS toxicity to high dose steroid administration. Br J Radiol. 2006;79(948):e196–9.

    Article  CAS  PubMed  Google Scholar 

  26. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.

    Article  PubMed  Google Scholar 

  27. Miller NR, Newman NJ, Biousse MD, Kerrison JB. Walsh and Hoyt’s clinical neuro-ophthalmology: the essentials. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 173–4.

    Google Scholar 

  28. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold Jr SC. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020–7.

    Article  CAS  PubMed  Google Scholar 

  29. Happold C, Ernemann U, Roth P, Wick W, Weller M, Schmidt F. Anticoagulation for radiation-induced neurotoxicity revisited. J Neurooncol. 2008;90(3):357–62.

    Article  PubMed  Google Scholar 

  30. Barbarosa AP, Cavalho D, Marrques L, et al. Inefficiency of anticoagulant therapy in the regression of radiation-induced optic neuropathy in Cushing’s disease. J Endocrinol Invest. 1999;22(4):301–5.

    Article  Google Scholar 

  31. Danesh-Meyer HV, Savino PJ, Sergott RC. Visual loss despite anticoagulation in radiation-induced optic neuropathy. Clin Exp Ophthalmol. 2004;32(3):333–5.

    Article  Google Scholar 

  32. Landau K, Killer HE. Radiation damage. Neurology. 1996;46(3):889.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JH, Brown SL, Kolozsvary A, et al. Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res. 2004;161(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  34. Ryu S, Kolozsvary A, Jenrow KA, Brown SL, Kim JH. Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J Neurooncol. 2007;82(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  35. Marx RE, Ehler WJ, Tayapongsak P, Pierce LW. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg. 1990;160(5):519–24.

    Article  CAS  PubMed  Google Scholar 

  36. Bennett MH, Feldmeier J, Hampson N, Smee R, Milross C. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst Rev. 2012;5:CD005005. This systematic meta-analysis of randomized control trials did not identify sufficient evidence to support a beneficial clinical effect of HBO on peripheral or central neurologic tissues.

    PubMed  Google Scholar 

  37. Heyboer III M, Milovanova TN, Wojcik S, et al. CD34+/CD45-dim stem cell mobilization by hyperbaric oxygen - changes with oxygen dosage. Stem Cell Res. 2014;12(3):638–45.

    Article  CAS  PubMed  Google Scholar 

  38. Boschetti M, De Lucchi M, Giusti M, et al. Partial visual recovery from radiation-induced optic neuropathy after hyperbaric oxygen therapy in a patient with Cushing disease. Eur J Endocrinol. 2006;154(6):813–8.

    Article  CAS  PubMed  Google Scholar 

  39. Li CQ, Gerson S, Snyder B. Case report: hyperbaric oxygen and MRI findings in radiation-induced optic neuropathy. Undersea Hyperb Med. 2014;41(1):59–63.

    PubMed  Google Scholar 

  40. Lee MS, Borruat FX. Should patients with radiation-induced optic neuropathy receive any treatment? J Neuroophthalmol. 2011;31(1):83–8.

    Article  PubMed  Google Scholar 

  41. Levin VL, Bidaut L, Hou P, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95. This study provides Class I evidence for the use of intravenous bevacizumab for the treatment of RBN, and rationale to consider this treatment for RON.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Farooq O, Lincoff NS, Saikali N, Prasad D, Miletich RS, Mechtler LL. Novel treatment for radiation optic neuropathy with intravenous bevacizumab. J Neuroophthalmol. 2012;32(4):321–4. This single case report proposes dramatic restoration of vision following intravenous bevacizumab for posterior RON.

    Article  PubMed  Google Scholar 

  43. Gonzalez J, Kumar AJ, Conrad CA, Levin VA. Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys. 2007;67(2):323–6.

    Article  CAS  PubMed  Google Scholar 

  44. Sherman JH, Aregawi DG, Lai A, et al. Optic neuropathy in patients with glioblastoma receiving bevacizumab. Neurology. 2009;73(22):1924–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Jeyaretna DS, Curry Jr WT, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR. Exacerbation of cerebral radiation necrosis by bevacizumab. J Clin Oncol. 2011;29(7):e159–62.

    Article  PubMed  Google Scholar 

  46. Taylor J, Gerstner ER. Anti-angiogenic therapy in high-grade glioma (treatment and toxicity). Curr Treat Options Neurol. 2013;15(3):328–37.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Finger PT, Chin KJ. Antivascular endothelial growth factor bevacizumab for radiation optic neuropathy: secondary to plaque radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):789–98. In this series of 14 patients who developed anterior RON following plaque radiotherapy for choroidal melanoma, intravitreal bevacizumab stabilized or improved visual acuity in the majority at nearly two years of median follow up. It should be noted that this treatment protocol requires many (>10) serial injections to achieve long-term control of the papillopathy and/or associated vision loss.

    Article  CAS  PubMed  Google Scholar 

  48. Brown GC, Shields JA, Sanborn G, Augsburger JJ, Savino PJ, Schatz NJ. Radiation optic neuropathy. Ophthalmology. 1982;89(12):1489–93.

    Article  CAS  PubMed  Google Scholar 

  49. Shields CL, Demirci H, Marr BP, et al. Intravitreal triamcinolone acetonide for acute radiation papillopathy. Retina. 2006;26(5):537–44.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Maanasa Indaram, Ferhina Ali, and Marc Levin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc H. Levin MD, PhD.

Additional information

Maanasa Indaram and Ferhina S. Ali contributed equally to this work.

This article is part of the Topical Collection on Neurologic Ophthalmology and Otology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indaram, M., Ali, F.S. & Levin, M.H. In search of a treatment for radiation-induced optic neuropathy. Curr Treat Options Neurol 17, 325 (2015). https://doi.org/10.1007/s11940-014-0325-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-014-0325-2

Keywords

Navigation