Skip to main content

Advertisement

Log in

Safe Treatment of Seizures in the Setting of HIV/AIDS

  • EPILEPSY (E WATERHOUSE, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

HIV+ patients are at increased risk for developing seizures due to the vulnerability of the central nervous system to HIV-associated diseases, immune dysfunction, and metabolic disturbances. In patients with acute seizures, standard protocols still apply with urgent seizure cessation being the priority. Management of the person with established epilepsy who contracts HIV is challenging, but the decision to initiate chronic antiepileptic drug (AED) therapy in an HIV+ patient is also difficult. Chronic treatment guidelines emphasize the interactions between AEDs and antiretroviral (ARV) medications, but provide no explicit advice regarding when to initiate an AED, what medication to select, and/or the duration of treatment. Epidemiologic data regarding seizure recurrence risk in HIV+ individuals is not available. The risk of further seizures likely depends upon the underlying etiology for the seizure(s) and patients’ immune status and may be increased by the use of efavirenz (an ARV). The issues for consideration include AED-ARV interactions, organ dysfunction, seizure type, and drug side effects, which may worsen or be confused with symptoms of HIV and/or epilepsy. Co-administration of enzyme inducing (EI)-AEDs and ARVs can result in virological failure, breakthrough seizure activity, AED toxicity, and/or ARV toxicity. Where available, the AED of choice in HIV+ patients is levetiracetam due to its broad spectrum activity, ease of use, minimal drug interactions, and favorable side effect profile. Lacosamide, gabapentin, and pregabalin are also favored choices in patients with partial onset seizures and/or those failing levetiracetam. Where newer AEDs are not available, valproic acid may be the treatment of choice in terms of an AED, which will not cause enzyme induction-associated ARV failure, but its side effect profile causes other obvious problems. In resource-limited settings (RLS) where only EI-AEDs are available, there are no good treatment options and further pressure needs to be placed upon policymakers to address this care gap and public health threat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. WHO. Gobal Summary of the AIDS epidemic 2011. 2011. Available at: http://www.who.int/hiv/data/2012_epi_core_en.png Accessed February 9, 2013.

  2. UNAIDS. UNAIDS United States of America. 2013. Available at: http://www.unaids.org/en/regionscountries/countries/unitedstatesofamerica/ Accessed February 9, 2013.

  3. Aarli JA, Diop AG, Lochmuller H. Neurology in sub-Saharan Africa: a challenge for World Federation of Neurology. Neurology. 2007;69(17):1715–8.

    Article  PubMed  Google Scholar 

  4. Sinha S, Satishchandra P, Nalini A, et al. New-onset seizures among HIV infected drug naïve patients from south India. Neuro Asia. 2005;10:29–33.

    Google Scholar 

  5. Kellinghaus C, Engbring C, Kovac S, et al. Frequency of seizures and epilepsy in neurological HIV-infected patients. Seizure. 2008;17(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  6. Birbeck GL, French JA, Perucca E, et al. Evidence-based guideline: antiepileptic drug selection for people with HIV/AIDS: report of the Quality Standards Subcommittee of the American Academy of Neurology. and the Ad Hoc Task Force of the Commission on Therapeutic Strategies of the International League Against Epilepsy. Neurology. 2012;78(2):139–45. This evidence-based guideline which was jointly endorsed by the American Academy of Neurology, the World Health Organization and the American Epilepsy Society provides a detailed review of the information to date on drug interactions between AEDs and ARVs as well as graded classification of the evidence.

    Article  PubMed  CAS  Google Scholar 

  7. Bhanushali MJ, Helmers SJ. Diagnosis and acute management of seizures in adults. Hosp Phys. 2008;48:37–42.

    Google Scholar 

  8. Berenguer J, Moreno S, Laguna F, et al. Tuberculous meningitis in patients infected with the human immunodeficiency virus. N Engl J Med. 1992;326(10):668–72.

    Article  PubMed  CAS  Google Scholar 

  9. Marx GE, Chan ED. Tuberculous meningitis: diagnosis and treatment overview. Tuberc Res Treat. 2011;2011:798764.

    PubMed  Google Scholar 

  10. Garcia-Monco JC. Central nervous system tuberculosis. Neurol Clin. 1999;17(4):737–59.

    Article  PubMed  CAS  Google Scholar 

  11. Bharucha NE, Raven RH, Nambiar VK. Review of seizures and status epilepticus in HIV and tuberculosis with preliminary view of Bombay hospital experience. Epilepsia. 2009;50 Suppl 12:64–6.

    Article  PubMed  Google Scholar 

  12. Kennedy DH, Fallon RJ. Tuberculous meningitis. JAMA. 1979;241(3):264–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sutlas PN, Unal A, Forta H, et al. Tuberculous meningitis in adults: review of 61 cases. Infection. 2003;31(6):387–91.

    PubMed  CAS  Google Scholar 

  14. Mora DJ, da Cunha Colombo ER, Ferreira-Paim K, et al. Clinical, epidemiological and outcome features of patients with cryptococcosis in Uberaba, Minas Gerais, Brazil. Mycopathologia. 2012;173(5–6):321–7.

    Article  PubMed  Google Scholar 

  15. Dore GJ, Law MG, Brew BJ. Prospective analysis of seizures occurring in human immunodeficiency virus type-1 infection. J Neuro-AIDS. 1996;1(4):59–69.

    Article  CAS  Google Scholar 

  16. Wong MC, Suite ND, Labar DR. Seizures in human immunodeficiency virus infection. Arch Neurol. 1990;47(6):640–2.

    Article  PubMed  CAS  Google Scholar 

  17. Lima MA, Drislane FW, Koralnik IJ. Seizures and their outcome in progressive multifocal leukoencephalopathy. Neurology. 2006;66(2):262–4.

    Article  PubMed  Google Scholar 

  18. Glassock RJ, Cohen AH, Danovitch G, Parsa KP. Human immunodeficiency virus (HIV) infection and the kidney. Ann Intern Med. 1990;112(1):35–49.

    Article  PubMed  CAS  Google Scholar 

  19. Tang WW, Kaptein EM, Feinstein EI, Massry SG. Hyponatremia in hospitalized patients with the acquired immunodeficiency syndrome (AIDS) and the AIDS-related complex. Am J Med. 1993;94(2):169–74.

    Article  PubMed  CAS  Google Scholar 

  20. Vitting KE, Gardenswartz MH, Zabetakis PM, et al. Frequency of hyponatremia and nonosmolar vasopressin release in the acquired immunodeficiency syndrome. JAMA. 1990;263(7):973–8.

    Article  PubMed  CAS  Google Scholar 

  21. Benjamin LA, Bryer A, Emsley HC, et al. HIV infection and stroke: current perspectives and future directions. Lancet Neurol. 2012;11(10):878–90. This is an excellent review of the epidemiology and pathophysiology of stroke in people with HIV, which also offers considerations for future research directions.

    Article  PubMed  Google Scholar 

  22. Nijhawan AE, Zachary KC, Kwara A, Venna N. Status epilepticus resulting from severe efavirenz toxicity in an HIV-infected patient. AIDS Read. 2008;18(7):386–8. C383.

    PubMed  Google Scholar 

  23. Strehlau R, Martens L, Coovadia A, et al. Absence seizures associated with efavirenz initiation. Pediatr Infect Dis J. 2011;30(11):1001–3.

    Article  PubMed  Google Scholar 

  24. Burger D, van der Heiden I, la Porte C, et al. Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol. 2006;61(2):148–54.

    Article  PubMed  CAS  Google Scholar 

  25. Gandhi M, Greenblatt RM, Bacchetti P, et al. A single-nucleotide polymorphism in CYP2B6 leads to >3-fold increases in efavirenz concentrations in plasma and hair among HIV-infected women. J Infect Dis. 2012;206(9):1453–61.

    Article  PubMed  CAS  Google Scholar 

  26. Nyakutira C, Roshammar D, Chigutsa E, et al. High prevalence of the CYP2B6 516G– > T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol. 2008;64(4):357–65.

    Article  PubMed  CAS  Google Scholar 

  27. Ward BA, Gorski JC, Jones DR, et al. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003;306(1):287–300.

    Article  PubMed  CAS  Google Scholar 

  28. Holtzman DM, Kaku DA, So YT. New-onset seizures associated with human immunodeficiency virus infection: causation and clinical features in 100 cases. Am J Med. 1989;87(2):173–7.

    Article  PubMed  CAS  Google Scholar 

  29. Portegies P, Berger JR. HIV/AIDS and the nervous system. Edinburgh: Elsevier; 2007.

    Google Scholar 

  30. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol. 2005;64(6):529–36.

    PubMed  CAS  Google Scholar 

  31. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147 Suppl 1:S232–40.

    PubMed  CAS  Google Scholar 

  32. Ravizza T, Balosso S, Vezzani A. Inflammation and prevention of epileptogenesis. Neurosci Lett. 2011;497(3):223–30.

    Article  PubMed  CAS  Google Scholar 

  33. AIDSinfo. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2013. Available at: http://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-guidelines/0/. Accessed Februrary 18, 2013.

  34. Lowenstein DH. Status epilepticus: an overview of the clinical problem. Epilepsia. 1999;40 Suppl 1:S3–8. discussion S21–2.

    Article  PubMed  Google Scholar 

  35. Lowenstein DH, Bleck T, Macdonald RL. It's time to revise the definition of status epilepticus. Epilepsia. 1999;40(1):120–2.

    Article  PubMed  CAS  Google Scholar 

  36. Beghi E. Treating epilepsy across its different stages. Ther Adv Neurol Disord. 2010;3(2):85–92.

    Article  PubMed  CAS  Google Scholar 

  37. Berg AT. Risk of recurrence after a first unprovoked seizure. Epilepsia. 2008;49 Suppl 1:13–8.

    Article  PubMed  Google Scholar 

  38. Berg AT, Shinnar S. The risk of seizure recurrence following a first unprovoked seizure: a quantitative review. Neurology. 1991;41(7):965–72.

    Article  PubMed  CAS  Google Scholar 

  39. Kim LG, Johnson TL, Marson AG, Chadwick DW, MMS. Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial. Lancet Neurol. 2006;5(4):317–22.

    Article  PubMed  Google Scholar 

  40. L'Homme RF, Dijkema T, van der Ven AJ, Burger DM. Brief report: enzyme inducers reduce elimination half-life after a single dose of nevirapine in healthy women. J Acquir Immune Defic Syndr. 2006;43(2):193–6.

    Article  PubMed  Google Scholar 

  41. Ji P, Damle B, Xie J, Unger SE, et al. Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol. 2008;48(8):948–56.

    Article  PubMed  CAS  Google Scholar 

  42. Okulicz JF, Grandits GA, French JA, et al. Virologic outcomes of HAART with concurrent use of cytochrome P450 enzyme-inducing antiepileptics: a retrospective case control study. AIDS Res Ther. 2011;8:18.

    Article  PubMed  Google Scholar 

  43. Jennings HR, Romanelli F. The use of valproic acid in HIV-positive patients. Ann Pharmacother. 1999;33(10):1113–6.

    Article  PubMed  CAS  Google Scholar 

  44. Romanelli F, Jennings HR, Nath A, et al. Therapeutic dilemma: the use of anticonvulsants in HIV-positive individuals. Neurology. 2000;54(7):1404–7.

    Article  PubMed  CAS  Google Scholar 

  45. Moog C, Kuntz-Simon G, Caussin-Schwemling C, Obert G. Sodium valproate, an anticonvulsant drug, stimulates human immunodeficiency virus type 1 replication independently of glutathione levels. J Gen Virol. 1996;77(Pt 9):1993–9.

    Article  PubMed  CAS  Google Scholar 

  46. Witvrouw M, Schmit JC, Van Remoortel B, et al. Cell type-dependent effect of sodium valproate on human immunodeficiency virus type 1 replication in vitro. AIDS Res Hum Retrovir. 1997;13(2):187–92.

    Article  PubMed  CAS  Google Scholar 

  47. Sagot-Lerolle N, Lamine A, Chaix ML, et al. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS. 2008;22(10):1125–9.

    Article  PubMed  CAS  Google Scholar 

  48. Yacoob Y, Bhigjee AI, Moodley P, Parboosing R. Sodium valproate and highly active antiretroviral therapy in HIV positive patients who develop new onset seizures. Seizure. 2011;20(1):80–2.

    Article  PubMed  Google Scholar 

  49. DiCenzo R, Peterson D, Cruttenden K, et al. Effects of valproic acid coadministration on plasma efavirenz and lopinavir concentrations in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother. 2004;48(11):4328–31.

    Article  PubMed  CAS  Google Scholar 

  50. Lertora JJ, Rege AB, Greenspan DL, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther. 1994;56(3):272–8.

    Article  PubMed  CAS  Google Scholar 

  51. van der Lee MJ, Dawood L, ter Hofstede HJ, et al. Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2006;80(2):159–68.

    Article  PubMed  Google Scholar 

  52. van Luin M, Colbers A, Verwey-van Wissen CP, et al. The effect of raltegravir on the glucuronidation of lamotrigine. J Clin Pharmacol. 2009;49(10):1220–7.

    Article  PubMed  Google Scholar 

  53. Naccarato M, Yoong D, Kovacs C, Gough K. A case of a potential drug interaction between clobazam and etravirine-based antiretroviral therapy. Antivir Ther. 2012;17(3):589–92.

    Article  PubMed  CAS  Google Scholar 

  54. Sills G, Brodie M. Pharmacokinetics and drug interactions with zonisamide. Epilepsia. 2007;48(3):435–41.

    Article  PubMed  CAS  Google Scholar 

  55. Barry M, Gibbons S, Back D, Mulcahy F. Protease inhibitors in patients with HIV disease. Clinically important pharmacokinetic considerations. Clin Pharmacokinet. 1997;32(3):194–209.

    Article  PubMed  CAS  Google Scholar 

  56. Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.

    Article  PubMed  CAS  Google Scholar 

  57. Tseng AL, Foisy MM. Significant interactions with new antiretrovirals and psychotropic drugs. Ann Pharmacother. 1999;33(4):461–73.

    Article  PubMed  CAS  Google Scholar 

  58. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2(8):473–81.

    Article  PubMed  CAS  Google Scholar 

  59. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2003;2(6):347–56.

    Article  PubMed  CAS  Google Scholar 

  60. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61(3):246–55.

    Article  PubMed  CAS  Google Scholar 

  61. Liedtke MD, Lockhart SM, Rathbun RC. Anticonvulsant and antiretroviral interactions. Ann Pharmacother. 2004;38(3):482–9.

    Article  PubMed  CAS  Google Scholar 

  62. Hachad H, Ragueneau-Majlessi I, Levy RH. New antiepileptic drugs: review on drug interactions. Ther Drug Monit. 2002;24(1):91–103.

    Article  PubMed  CAS  Google Scholar 

  63. White JR, Walczak TS, Leppik IE, et al. Discontinuation of levetiracetam because of behavioral side effects: a case–control study. Neurology. 2003;61(9):1218–21.

    Article  PubMed  CAS  Google Scholar 

  64. Krause LU, Brodowski KO, Kellinghaus C. Atrioventricular block following lacosamide intoxication. Epilepsy Behav. 2011;20(4):725–7.

    Article  PubMed  Google Scholar 

  65. Nizam A, Mylavarapu K, Thomas D, et al. Lacosamide-induced second-degree atrioventricular block in a patient with partial epilepsy. Epilepsia. 2011;52(10):e153–5.

    Article  PubMed  CAS  Google Scholar 

  66. Halford JJ, Lapointe M. Clinical perspectives on lacosamide. Epilepsy Curr. 2009;9(1):1–9.

    Article  PubMed  Google Scholar 

  67. Zaccara G, Perucca P, Loiacono G, et al. The adverse event profile of lacosamide: a systematic review and meta-analysis of randomized controlled trials. Epilepsia. 2013;54(1):66–74.

    Article  PubMed  CAS  Google Scholar 

  68. McLean MJ, Gidal BE. Gabapentin dosing in the treatment of epilepsy. Clin Ther. 2003;25(5):1382–406.

    Article  PubMed  CAS  Google Scholar 

  69. McLean MJ. Clinical pharmacokinetics of gabapentin. Neurology. 1994;44(6 Suppl 5):S17–22. discussion S31–12.

    PubMed  CAS  Google Scholar 

  70. Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia. 2004;45 Suppl 6:13–8.

    Article  PubMed  CAS  Google Scholar 

  71. Picot MC, Neveu D, Kahane P, et al. Cost-effectiveness of epilepsy surgery in a cohort of patients with medically intractable partial epilepsy—preliminary results. Rev Neurol. 2004;160(Spec No 1):5S354–67.

    PubMed  Google Scholar 

  72. Silfvenius H. Cost and cost-effectiveness of epilepsy surgery. Epilepsia. 1999;40 Suppl 8:32–9.

    Article  PubMed  Google Scholar 

  73. Widjaja E, Li B, Schinkel CD, et al. Cost-effectiveness of pediatric epilepsy surgery compared with medical treatment in children with intractable epilepsy. Epilepsy Res. 2011;94(1–2):61–8.

    Article  PubMed  Google Scholar 

  74. Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg. 2011;115(6):1248–55.

    Article  PubMed  Google Scholar 

  75. Boon P, Vonck K, D'Have M, et al. Cost-benefit of vagus nerve stimulation for refractory epilepsy. Acta Neurol Belg. 1999;99(4):275–80.

    PubMed  CAS  Google Scholar 

  76. Majoie HJ, Berfelo MW, Aldenkamp AP, et al. Vagus nerve stimulation in children with therapy-resistant epilepsy diagnosed as Lennox-Gastaut syndrome: clinical results, neuropsychological effects, and cost-effectiveness. J Clin Neurophysiol. 2001;18(5):419–28.

    Article  PubMed  CAS  Google Scholar 

  77. Bough KJ, Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia. 2007;48(1):43–58.

    Article  PubMed  CAS  Google Scholar 

  78. Kossoff EH, Rowley H, Sinha SR, Vining EP. A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia. 2008;49(2):316–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Gretchen L. Birbeck has received grant support from the National Institutes of Health.

Conflict of Interest

Omar Siddiqi declares that he has no conflict of interest.

Gretchen L. Birbeck has served on a board for Lifting the Burden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Siddiqi MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqi, O., Birbeck, G.L. Safe Treatment of Seizures in the Setting of HIV/AIDS. Curr Treat Options Neurol 15, 529–543 (2013). https://doi.org/10.1007/s11940-013-0237-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-013-0237-6

Keywords

Navigation