Skip to main content

Advertisement

Log in

Opinion statement

  • In patients with mutations in the genes that encode the chloride, sodium, and calcium channels in skeletal muscle, there is abnormal function of the muscle membrane, which can cause myotonia or attacks of weakness. Mutations in the chloride and sodium channels can lead to myotonia, which typically begins in early childhood. Mexiletine is usually effective in controlling myotonia in these patients.

  • Mexiletine is also effective in preventing attacks of cold-provoked muscle paralysis in patients with paramyotonia congenita, a sodium channel disorder. Certain mutations in the sodium channel cause attacks of hyperkalemic periodic paralysis; these attacks are often controlled with thiazide diuretics.

  • Mutations in the skeletal muscle calcium channel cause periodic attacks of weakness, but hypokalemia (not hyperkalemia) occurs during these episodes. The carbonic anhydrase inhibitors acetazolamide and dichlorphenamide prevent attacks of hypokalemic periodic paralysis, although the mechanism by which they produce this protective effect remains a mystery. Interestingly, the hypokalemic attacks with periodic weakness that occur in some thyrotoxic patients are made worse by acetazolamide. This undesirable response to treatment emphasizes that not all disorders associated with hypokalemic periodic paralysis will benefit from carbonic anhydrase inhibitor therapy.

  • DNA analysis to search for a mutation in the genes that encode for chloride, sodium, or calcium channels in skeletal muscle is helpful to establish the diagnosis. Some patients may eventually require provocative testing, however, to evaluate the attack of weakness and to reach a final diagnosis. Fortunately, there are effective treatments for the channelopathies that affect the skeletal muscle membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Koch MC, Steinmeyer K, Lorenz C, et al.: The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 1992, 257:797–800.

    Article  PubMed  CAS  Google Scholar 

  2. Fahlke C, Knittle T, Gurnett CA, et al.: Subunit stoichiometry of human muscle chloride channels. J Gen Physiol 1997, 109:93–104. This is an excellent current research paper that summarizes the latest ideas about the effects of mutations in the structure of the chloride channel and its function in skeletal muscle.

    Article  PubMed  CAS  Google Scholar 

  3. Meyer-Kleine C, Steinmeyer K, Ricker K, et al.: Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 1995, 57:1325–1334.

    PubMed  CAS  Google Scholar 

  4. Zhang J, George ALJ, Griggs RC, et al.: Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology 1996, 47:993–998.

    PubMed  CAS  Google Scholar 

  5. Ptacek LJ, Johnson KJ, Griggs RC: Genetics and physiology of the myotonic muscle disorders. N Engl J Med 1993, 328:482–489.

    Article  PubMed  CAS  Google Scholar 

  6. Barchi RL: Molecular pathology of the skeletal muscle sodium channel. Ann Rev Physiol 1995, 57:355–385.

    Article  CAS  Google Scholar 

  7. Lehmann-Horn F, Engel AG, Ricker K, et al.: The periodic paralysis and paramyotonia congenita. In Myology, edn 2. Edited by Engel AG, Franzini-Armstrong C. New York: McGraw-Hill; 1994:1303–1334. This chapter provides a thorough review of sodium channel disorders and their treatment. References 6, 8, and 14 provide further updates on the molecular defects responsible for these disorders.

    Google Scholar 

  8. Cannon SC: From mutation to myotonia in sodium channel disorders. Neuromuscul Disord 1997, 7:241–249.

    Article  PubMed  CAS  Google Scholar 

  9. Tawil R: Periodic paralyses and associated disorders. In Neurobase. Edited by GilmanS, GoldsteinGW, Waxman SC. San Diego: Arbor Publishing; in press.

  10. Ptacek LJ, Tawil R, Griggs RC, et al.: Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994, 77:863–868.

    Article  PubMed  CAS  Google Scholar 

  11. Jurkat-Rott K, Lehmann-Horn F, Elbaz A, et al.: A calcium channel mutation causing hypokalemic periodic paralysis. Hum Molec Genet 1994, 3:1415–1419.

    Article  PubMed  CAS  Google Scholar 

  12. Fouad G, Dalakas M, Servidei S, et al.: Genotype-phenotype correlations of DHP receptor a1-subunit gene mutations causing hypokalemic periodic paralysis. Neuromuscul Disord 1997, 7:33–38. This is a good current overview of the mutations and clinical features that occur in families with hereditary hypokalemic periodic paralysis.

    Article  PubMed  CAS  Google Scholar 

  13. Jurkat-Rott K, Uetz U, Pika-Hartlaub P, et al.: Calcium currents and transients of native and heterologously expressed mutant skeletal muscle DHP receptor a1-subunits (R528H). FEBS Lett 1998, 423:198–204.

    Article  PubMed  CAS  Google Scholar 

  14. Ptacek LJ: Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous system. Neuromuscul Disord 1997, 7:250–255.

    Article  PubMed  CAS  Google Scholar 

  15. Greenberg D: Calcium channels in neurological disease. Ann Neurol 1997, 19:289–291.

    Google Scholar 

  16. Rüdel R, Lehmann-Horn F, Ricker K: Altered excitability of the muscle cell membrane. The nondystrophic myotonias. In Myology, edn 2. Edited by EngelAG, Franzini-ArmstrongC. New York: McGraw-Hill; 1994:1291–1302.

    Google Scholar 

  17. Kwiecinski H, Ryniewicz B, Ostrzycki A: Treatment of myotonia with antiarrhythmic drugs. Acta Neurol Scand 1992, 86:371–375. This article represents the best study published evaluating the use of mexiletine and tocainide and compares the combination to phenytoin. There is considerable opportunity for further studies of antimyotonia therapy in all the myotonic disorders.

    Article  PubMed  CAS  Google Scholar 

  18. Moxley RT III, Ricker K, Kingston WJ, et al.: Potassium uptake in muscle during paramyotonic weakness. Neurology 1989, 39:952–955.

    PubMed  Google Scholar 

  19. Ricker K, Lehmann-Horn F, Moxley RT III: Myotonia fluctuans. Arch Neurol 1990, 47:268–274.

    PubMed  CAS  Google Scholar 

  20. Ricker K, Moxley RT, Heine R, Lehmann-Horn F: Myotonia fluctuans. A third type of muscle sodium channel disease. Ann Neurol 1994, 51:1095–1102.

    CAS  Google Scholar 

  21. Griggs RC, Engel WK, Resnick JS: Acetazolamide treatment of hypokalemic periodic paralysis. Prevention of attacks and improvement of persistent weakness. Ann Intern Med 1970, 73:39–48.

    PubMed  CAS  Google Scholar 

  22. Moxley RT III: Metabolic and endocrine myopathies. In Disorders of Voluntary Muscle, edn 6. Edited by Walton J, Karpati G, Hilton-Jones D. Edinburgh: Churchill Livingstone; 1994:647–716.

    Google Scholar 

  23. Tawil R, Griggs RC: Hypokalemic periodic paralysis. In Handbook of Muscle Disease. Edited by Lane RJM. Basel: Marcel Dekker; 1996:329–337.

    Google Scholar 

  24. McManis DG, Lambert EH, Daube JR: The exercise test in periodic paralysis. Muscle Nerve 1986, 9:704–710.

    Article  PubMed  CAS  Google Scholar 

  25. Griggs RC: Periodic paralysis. In Neurology and Neurosurgery Update Series, vol. 4. Edited by Scheinberg P, Davidoff RA. Princeton: Continuing Professional Education Center, Inc.; 1983:1–8.

    Google Scholar 

  26. Mielke U, Haass A, Sen S, Schmidt W: Antimyotonic therapy with tocainide under ECG control in the myotonic dystrophy of Curschmann-Steinert. J Neurol 1985, 232:271–274.

    Article  PubMed  CAS  Google Scholar 

  27. Campbell RW: Mexiletine. N Engl J Med 1987, 316:29–34.

    Article  PubMed  CAS  Google Scholar 

  28. Manolis AS, Deering TF, Cameron J, Estes NA: Mexiletine: pharmacology and therapeutic use. Clin Cardiol 1990, 13:349–359.

    PubMed  CAS  Google Scholar 

  29. Torres CF, Griggs RC, Moxley RT, Bender AN: Hypokalemic periodic paralysis exacerbated by acetazolamide. Neurology 1981, 31:1423–1428.

    PubMed  CAS  Google Scholar 

  30. Tawil R, Moxley RT, Griggs RC: Acetazolamide-induced nephrolithiasis: implications for treatment of neuromuscular disorders. Neurology 1993, 43:1105–1106.

    PubMed  CAS  Google Scholar 

  31. Griggs RC, Tawil R, Brown RH, et al.: Implications of the molecular defects for classification and treatment of periodic paralysis. In Recent Advances in Clinical Neurophysiology. Edited by Kimura J, Shibasaki H. New York: Elsevier Science; 1996:160–169. This paper presents a helpful discussion of the design of a therapeutic trial in periodic paralysis.

    Google Scholar 

  32. Griggs RC, Tawil R, Brown RH, et al. and the Working Group on Periodic Paralysis: Dichlorphenamide is effective in the treatment of hypokalemic periodic paralysis [abstract]. Ann Neurol 1997, 42:428. This report summarizes the results of a well-designed doubleblind randomized controlled study in patients with periodic paralysis and clearly establishes the efficacy of the carbonic anhydrase inhibitor dichlorphenamide in preventing attacks of weakness.

    Google Scholar 

  33. Dalakas MC, Engel WK: Treatment of “permanent” muscle weakness in familial hypokalemic periodic paralysis. Muscle Nerve 1983, 6:182–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moxley, R.T. Channelopathies. Curr Treat Options Neurol 2, 31–47 (2000). https://doi.org/10.1007/s11940-000-0022-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-000-0022-1

Keywords

Navigation