Skip to main content

Advertisement

Log in

Interactions Between Inflammatory Bowel Disease Drugs and Chemotherapy

  • Intractable Disease in the Elderly: When Conventional Therapy Fails (S Katz, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Opinion statement

As new and effective novel therapies in inflammatory bowel disease (IBD) become available, patients are living longer with advancing age and are at increased risk for malignancy. The management of IBD and malignancy involves multiple combinations of chemotherapy agents and IBD drugs, with the potential for interactions between these therapies. Interactions may either potentiate the effectiveness of drug class or exacerbate their common side effects. In this review article, we present a guide on studied interactions between IBD therapies and chemotherapy agents, specifically those of colorectal cancer, breast cancer, non-Hodgkin’s lymphoma, and melanoma. The pharmacology and pharmocokinetics of each IBD drug will be discussed. Then, the IBD drug and chemotherapy interactions are summarized in table format. This guide will provide a quick reference to guide clinicians with this challenging management of two disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Laharie D. Previous cancer and/or lymphoma in patients with refractory IBD - pro: anti-TNF or immunosuppressive treatment. Dig Dis. 2014;32:115–21 This review article discusses the limited evidence of cancer related to immunomodulator and anti-TNF use and describes the importance but difficulty in treating both cancer and IBD, which should be done on an individualized basis in coordination with the patient and oncologist.

    Article  Google Scholar 

  2. Eaden J, Abrams K, Ekbom A, Jackson E, Mayberry J. Colorectal cancer prevention in ulcerative colitis: a case-control study. Aliment Pharmacol Ther. 2000;14(2):145–53. doi:10.1046/j.1365-2036.2000.00698.x.

    Article  CAS  PubMed  Google Scholar 

  3. Rousseaux C, El-Jamal N, Fumery M, Dubuquoy C, Romano O, Chatelain D, Langlois A, Bertin B, Buob D, Colombel JF, Cortot A, Desreumaux P, Dubuquoy L. The 5-aminosalicylic acid antineoplastic effect in the intestine is mediated by PPAR. Carcinogenesis. 2013;34(11):2580–6. doi:10.1093/carcin/bgt245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Small RE, Schraa CC. Chemistry, pharmacology, pharmacokinetics, and clinical applications of mesalamine for the treatment of inflammatory bowel disease. Pharmacotherapy. 1994;14:4.

  5. Levesque BG, Kane SV. Searching for the delta: 5-aminosalicylic acid therapy for Crohn’s disease. Gastroenterol Hepatol. 2011;7(5):295–301.

    Google Scholar 

  6. Ham M, Moss AC. Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev Clin Pharmacol. 2012;5(2):113–23. doi:10.1586/ecp.12.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Becker NQ, Moss AC. Improving delivery of aminosalicylates in ulcerative colitis: effect on patient outcomes. Drugs. 2008;68:1089–103.

    Article  CAS  PubMed  Google Scholar 

  8. Brunner M, Greinwald R, Kletter K, et al. Gastrointestinal transit and release of 5-aminosalicylic acid from 154Sm-labelled mesalazine pellets vs. tablets in male healthy volunteers. Aliment Pharmacol Ther. 2003;17:1163–9.

    Article  CAS  PubMed  Google Scholar 

  9. Trivedi CD, Pitchumoni CS. Drug-induced pancreatitis. J Clin Gastroenterol. 2005;39(8):709–16. doi:10.1097/01.mcg.0000173929.60115.b4.

    Article  PubMed  Google Scholar 

  10. Chang CT, Ho TY, Lin H, Liang J-A, Huang HC, Li CC, Lo HY, Wu SL, Huang YF, Hsiang CY. 5-Fluorouracil induced intestinal mucositis via nuclear factor-κB activation by transcriptomic analysis and in vivo bioluminescence imaging. PLoS One. 2012;7(3):e31808. doi:10.1371/journal.pone.0031808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vinklerova I, Prochazka M, Prochazka V, Urbanek K. Incidence, severity, and etiology of drug-induced acute pancreatitis. Dig Dis. 2010;55(10):2977–81.

    Article  Google Scholar 

  12. Xu Z, David HM, Zhou H. Clinical impact of concomitant immunomodulators on biologic therapy: pharmacokinetics, immunogenicity, efficacy and safety. J Clin Pharmacol. 2015;55(53).

  13. Bar F, Sina C, Fellermann K. Thiopurines in inflammatory bowel disease revisited. World J Gastroenterol. 2013;19(11):1699–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sandborn WJ, Tremaine WJ, Wolf DC, et al. Lack of effect of intravenous administration on time to respond to azathioprine for steroid-treated Crohn’s disease. North American Azathioprine Study Group. Gastroenterology. 1999;117(3):527–35.

    Article  CAS  PubMed  Google Scholar 

  15. Teml A, Schaeffeler E, Herrlinger KR, Klotz U, Schwab M. Thiopurine treatment in inflammatory bowel disease. Clin Pharmacokinet. 2007;46(3):187–208. doi:10.2165/00003088-200746030-00001.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas A, Lodhia N. Advanced therapy for inflammatory bowel disease: a guide for the primary care physician. J Am Board Fam Med. 2014;27:3.This review paper serves as a clinical guide for primary care physicians taking care of inflammatory bowel disease patients with advanced therapy and provides an overview of the mechanism, efficacy, side effects of thiopurines, and biological therapies

    Article  Google Scholar 

  17. Lowry PW, Franklin CL, Weaver AL, et al. Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut. 2001;49(5):656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet. 1993;342(8886–8887):1514–6. doi:10.1016/s0140-6736(05)80084-4.

    Article  CAS  PubMed  Google Scholar 

  19. Goessling W, Mayer RJ. Systemic treatment of patients who have colorectal cancer and inflammatory bowel disease. Gastroenterol Clin N Am. 2006;35(3):713–27. doi:10.1016/j.gtc.2006.07.006.

    Article  Google Scholar 

  20. Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. Environ Toxicol Pharmacol. 2014;37(1):118–33. doi:10.1016/j.etap.2013.08.015.

    Article  CAS  PubMed  Google Scholar 

  21. Kano Y, Akutsu M, Suzuki K, Yoshida M. Effects of carboplatin in combination with other anticancer agents on human leukemia cell lines. Leuk Res. 1993;17(2):113–9. doi:10.1016/0145-2126(93)90055-p.

    Article  CAS  PubMed  Google Scholar 

  22. Markasz L, Stuber G, Vanherberghen B, Flaberg E, Olah E, Carbone E, Eksborg S, Klein E, Skribek H, Szekely L. Effect of frequently used chemotherapeutic drugs on the cytotoxic activity of human natural killer cells. Mol Cancer Ther. 2007;6(2):644–54. doi:10.1158/1535-7163.mct-06-0358.

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez V, Bodey GP, McCredie KB, et al. Combination 6-mercaptopurine-adriamycin in refractory adult acute leukemia. Clin Pharmacol Ther. 1975;18(4):462–6.

    Article  CAS  PubMed  Google Scholar 

  24. Aldabbagh K, Pouderoux S, Roca L, Poujol S, Fabbro M, Romieu G, Jacot W. Etoposide, mitomycin, and methotrexate combination in heavily treated breast cancer: a retrospective study. Breast Cancer. 2010;19(1):16–22. doi:10.1007/s12282-010-0240-7.

    Article  PubMed  Google Scholar 

  25. Kinsella AR, Smith D, Pickard M. Resistance to chemotherapeutic antimetabolites: a function of salvage pathway involvement and cellular response to DNA damage. Br J Cancer. 1997;75(7):935–45. doi:10.1038/bjc.1997.164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagatoshi Y, Matsuzaki A, Suminoe A, Inada H, Ueda K, Kawakami K, Yanai F, Nakayama H, Moritake H, Itonaga N, Hotta N, Fujita K, Hidaka Y, Yamanaka T, Kawano Y, Okamura J. Randomized trial to compare LSA2L2-type maintenance therapy to daily 6-mercaptopurine and weekly methotrexate with vincristine and dexamethasone pulse for children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010;55(2):239–47. doi:10.1002/pbc.22528.

    Article  PubMed  Google Scholar 

  27. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):39–45. doi:10.1016/j.cbi.2009.12.013.

    Article  CAS  PubMed  Google Scholar 

  28. Cividini F, Pesi R, Chaloin L, Allegrini S, Camici M, Cros-Perrial E, Dumontet C, Jordheim LP, Tozzi MG. The purine analog fludarabine acts as a cytosolic 5′-nucleotidase II inhibitor. Biochem Pharmacol. 2015;94(2):63–8. doi:10.1016/j.bcp.2015.01.010.

    Article  CAS  PubMed  Google Scholar 

  29. Ciccolini J, Evrard A, M’Batchi L, Pourroy B, Mercier C, Iliadis A, Lacarelle B, Verschuur A, Ouafik LH, André N. CDA deficiency as a possible culprit for life-threatening toxicities after cytarabine plus 6-mercaptopurine therapy: pharmacogenetic investigations. Pharmacogenomics. 2012;13(4):393–7. doi:10.2217/pgs.11.175.

    Article  CAS  PubMed  Google Scholar 

  30. Kano Y, Suzuki K, Akutsu M, Suda K. Effects of mitoxantrone in combination with other anticancer agents on a human leukemia cell line. Leukemia. 1992;6(5):440–5.

    CAS  PubMed  Google Scholar 

  31. Alexander S, Kraveka JM, Weitzman S, Lowe E, Smith L, Lynch JC, Chang M, Kinney MC, Perkins SL, Laver J, Gross TG, Weinstein H. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the children’s oncology group. Pediatr Blood Cancer. 2014;61(12):2236–42. doi:10.1002/pbc.25187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeLeve LD, Wang X, Kuhlenkamp JF, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology. 1996;23(3):589–99. doi:10.1002/hep.510230326.

    Article  CAS  PubMed  Google Scholar 

  33. Kuehr T, Ruff P, Rapoport BL, Falk S, Daniel F, Jacobs C, Davidson N, Thaler J, Boussard B, Carmiachael J. Phase I/II study of first-line irinotecan combined with 5-fluorouracil and folinic acid Mayo Clinic schedule in patients with advanced colorectal cancer. BMC Cancer. 2004;16(4):36.

    Article  Google Scholar 

  34. Andreyev HJ, Davidson SE, Gillespie C, Allum WH, Swarbrick E. Practice guidance on the management of acute and chronic gastrointestinal problems arising as a result of treatment for cancer. Gut. 2011;61(2):179–92. doi:10.1136/gutjnl-2011-300563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Miyawaki S, Tanimoto M, Kobayashi T, et al. No beneficial effect from addition of etoposide to daunorubicin, cytarabine, and 6-mercaptopurine in individualized induction therapy of adult acute myeloid leukemia: the JALSG-AML92 study. Japan Adult Leukemia Study Group. Int J Hematol. 1999;70(2):97–104.

    CAS  PubMed  Google Scholar 

  36. Periti P, Mini E. Immunomodulation by cancer chemotherapeutic agents. Chemioterapia. 1987;6(6):399–402.

    CAS  PubMed  Google Scholar 

  37. Fraser AG. Methotrexate: first-line or second-line immunomodulator? Eur J Gastroenterol Hepatol. 2003;15:225–31.

    Article  CAS  PubMed  Google Scholar 

  38. Egan LJ, Sandborn WJ, Mays DC, et al. Systemic and intestinal pharmacokinetics of methotrexate in patients with inflammatory bowel disease. Clinical Pharmacology and Therapeutics. 1999;65(1):29–39.

  39. Bannwarth B, Phourcq F, Schaeverbeke T, Dehais J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet. 1996;30:194–210.

    Article  CAS  PubMed  Google Scholar 

  40. Sarisozen C, Vural I, Levchenko T, Hincal AA, Torchilin VP. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine a or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells. Drug Delivery. 2012;19(4):169–76. doi:10.3109/10717544.2012.674163.

    Article  CAS  PubMed  Google Scholar 

  41. Tohyama N, Tanaka S, Onda K, Sugiyama K, Hirano T. Influence of anticancer agents on cell survival, proliferation, and CD4+CD25+Foxp3+ regulatory T cell-frequency in human peripheral-blood mononuclear cells activated by T cell-mitogen. Int Immunopharmacol. 2013;15(1):160–6. doi:10.1016/j.intimp.2012.11.008.

    Article  CAS  PubMed  Google Scholar 

  42. Doolittle ND, Jahnke K, Belanger R, Ryan DA, Nance RW, Lacy CA, Tyson RM, Haluska M, Hedrick NA, Varallyay C, Neuwelt EA. Potential of chemo-immunotherapy and radioimmunotherapy in relapsed primary central nervous system (CNS) lymphoma. Leukemia & Lymphoma. 2007;48(9):1712–20. doi:10.1080/10428190701493902.

    Article  CAS  Google Scholar 

  43. Soldini D, Gaspert A, Montani M, et al. Apoptotic enteropathy caused by antimetabolites and TNF-α antagonists. Journal of Clinical Pathlogy. 2014;67(7):582–6.

    Article  CAS  Google Scholar 

  44. Das M, Jain R, Agrawal AK, Thanki K, Jain S. Macromolecular bipill of gemcitabine and methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio. Bioconjug Chem. 2014;25(3):501–9. doi:10.1021/bc400477q.

    Article  CAS  PubMed  Google Scholar 

  45. Rigacci L, Carrai V, Nassi L, Alterini R, Longo G, Bernardi F, Bosi A. Combined chemotherapy with carmustine, doxorubicin, etoposide, vincristine, and cyclophosphamide plus mitoxantrone, cytarabine and methotrexate with citrovorum factor for the treatment of aggressive non-Hodgkin lymphoma. Cancer. 2005;103(5):970–7. doi:10.1002/cncr.20891.

    Article  CAS  PubMed  Google Scholar 

  46. Wheeler RH, Clauw DJ, O’Toole TE, Ensminger WD. Cytokinetic evaluation of the four-drug combination of bleomycin, vincristine, mitomycin c, and methotrexate (BOMM) in cultured Burkitt’s lymphoma cells and human bone marrow. Cancer. 1982;50(10):1993–9. doi:10.1002/1097-0142(19821115)50:10<1993::aid-cncr2820501003>3.0.co;2-q.

    Article  CAS  PubMed  Google Scholar 

  47. Edelman MJ, Meyers FJ, Miller TR, Williams SG, Gandour-Edwards R, deVere White RW. Phase I/II study of paclitaxel, carboplatin, and methotrexate in advanced transitional cell carcinoma: a well-tolerated regimen with activity independent of p53 mutation. Urology. 2000;55(4):521–5. doi:10.1016/s0090-4295(99)00538-5.

    Article  CAS  PubMed  Google Scholar 

  48. Kadia TM, Kantarjian HM, Thomas DA, O’Brien S, Estrov Z, Ravandi F, Jabbour E, Pemmaraju N, Daver N, Wang X, Jain P, Pierce S, Brandt M, Garcia-Manero G, Cortes J, Borthakur G. Phase II study of methotrexate, vincristine, pegylated-asparaginase, and dexamethasone (MOpAD) in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2014;90(2):120–4. doi:10.1002/ajh.23886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kim YR, Kim SH, Chang JH, Suh C-O, Kim S-J, Kim Y, Hwang DY, Jang JE, Hyun SY, Cheong J-W, Min YH, Kim JS. Early response to high-dose methotrexate, vincristine, and procarbazine chemotherapy-adapted strategy for primary CNS lymphoma: no consolidation therapy for patients achieving early complete response. Ann Hematol. 2013;93(2):211–9. doi:10.1007/s00277-013-1853-7.

    Article  PubMed  CAS  Google Scholar 

  50. Maruyama D, Watanabe T, Maeshima AM, Nomoto J, Taniguchi H, Azuma T, Mori M, Munakata W, Kim SW, Kobayashi Y, Matsuno Y, Tobinai K. Modified cyclophosphamide, vincristine, doxorubicin, and methotrexate (CODOX-M)/ifosfamide, etoposide, and cytarabine (IVAC) therapy with or without rituximab in Japanese adult patients with Burkitt lymphoma (BL) and B cell lymphoma, unclassifiable, with features intermediate between diffuse large B cell lymphoma and BL. Int J Hematol. 2010;92(5):732–43. doi:10.1007/s12185-010-0728-0.

    Article  CAS  PubMed  Google Scholar 

  51. Lee C, Gebski VJ, Coates AS, Veillard A-S, Harvey V, Tattersall MHN, Byrne MJ, Brigham B, Forbes J, Simes R. Trade-offs in quality of life and survival with chemotherapy for advanced breast cancer: mature results of a randomized trial comparing single-agent mitoxantrone with combination cyclophosphamide, methotrexate, 5-fluorouracil and prednisone. SpringerPlus. 2013;2(1):391. doi:10.1186/2193-1801-2-391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kurita D, Miura K, Nakagawa M, Ohtake S, Sakagami M, Uchino Y, Takahashi H, Kiso S, Hojo A, Kodaira H, Yagi M, Hirabayashi Y, Kobayashi Y, Iriyama N, Kobayashi S, Hatta Y, Kura Y, Sugitani M, Takei M. Dose-intensified CHOP with rituximab (R-double-CHOP) followed by consolidation high-dose chemotherapies for patients with advanced diffuse large B-cell lymphoma. Int J Hematol. 2015;101(6):585–93. doi:10.1007/s12185-015-1780-6.

    Article  CAS  PubMed  Google Scholar 

  53. Senn HJ, Maibach R, Castiglione M, et al. Adjuvant chemotherapy in operable breast cancer: cyclophosphamide, methotrexate, and fluorouracil versus chlorambucil, methotrexate, and fluorouracil—11-year results of Swiss Group for Clinical Cancer Research trial SAKK 27/82. J Clin Oncol. 1997;15(7):2502–9.

    CAS  PubMed  Google Scholar 

  54. von Minckwitz G, Chernozemsky I, Sirakova L, Chilingirov P, Souchon R, Marschner N, Kleeberg U, Tsekov C, Fritze D, Thomssen C, Stuart N, Vermorken JB, Loibl S, Merkle K, Kaufmann M. Bendamustine prolongs progression-free survival in metastatic breast cancer (MBC): a phase III prospective, randomized, multicenter trial of bendamustine hydrochloride, methotrexate and 5-fluorouracil (BMF) versus cyclophosphamide, methotrexate and 5-fluorouracil (CMF) as first-line treatment of MBC. Anti-Cancer Drugs. 2005;16(8):871–7.

    Article  Google Scholar 

  55. Robert G, Chappé C, Taque S, Bruneau B, Gandemer V. Hearing loss during osteosarcoma chemotherapy. J Pediatr Hematol Oncol. 2014;36(2):e100–e2. doi:10.1097/mph.0000000000000065.

    Article  PubMed  Google Scholar 

  56. Tsukune Y, Isobe Y, Yasuda H, Shimizu S, Katsuoka Y, Hosone M, Oshimi K, Komatsu N, Sugimoto K. Activity and safety of combination chemotherapy with methotrexate, ifosfamide, l-asparaginase and dexamethasone (MILD) for refractory lymphoid malignancies: a pilot study. Eur J Haematol. 2010;84(4):310–5. doi:10.1111/j.1600-0609.2009.01395.x.

    Article  CAS  PubMed  Google Scholar 

  57. Dong M, He XH, Liu P, Qin Y, Yang J, Zhou SY, Yang S, Zhang CG, Gui L, Zhou LQ, Shi YK. Gemcitabine-based combination regimen in patients with peripheral T-cell lymphoma. Med Oncol. 2012;30(1). doi:10.1007/s12032-012-0351-4.

  58. Sawada M, Tsurumi H, Yamada T, Hara T, Fukuno K, Goto H, Shimizu M, Kasahara S, Yoshikawa T, Kanemura N, Oyama M, Takami T, Moriwaki H. A prospective study of P-IMVP-16/CBDCA: a novel salvage chemotherapy for patients with aggressive non-Hodgkin’s lymphoma who had previously received CHOP therapy as first-line chemotherapy. Eur J Haematol. 2002;68(6):354–61. doi:10.1034/j.1600-0609.2002.01654.x.

    Article  CAS  PubMed  Google Scholar 

  59. Parmar S, Andersson BS, Couriel D, Munsell MF, Fernandez-Vina M, Jones RB, Shpall EJ, Popat U, Anderlini P, Giralt S, Alousi A, Cano P, Bosque D, Hosing C, Silva L, Westmoreland M, Wathen JK, Berry D, Champlin RE, de Lima MJ. Prophylaxis of graft-versus-host disease in unrelated donor transplantation with pentostatin, tacrolimus, and mini-methotrexate: a phase I/II controlled, adaptively randomized study. J Clin Oncol. 2010;29(3):294–302. doi:10.1200/jco.2010.30.6357.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liang GC, Kumar UM. Disseminated herpes zoster and S. aureus septic arthritis in a rheumatoid arthritis patient treated with 2-chlorodeoxyadenosine (cladribine) and methotrexate. JCR: Journal of Clinical Rheumatology. 1999;5(3):173–8. doi:10.1097/00124743-199906000-00013.

    CAS  PubMed  Google Scholar 

  61. Salamoon M, Hussein T, Kenj M, Bachour M. High-dose methotrexate, high-dose cytarabine and temozolomide for the treatment of primary central nervous system lymphoma (PCNSL). Med Oncol. 2013;30(4). doi:10.1007/s12032-013-0690-9.

  62. Bergner N, Kluge S, Monsef I, Illerhaus G, Engert A, Skoetz N. Role of chemotherapy additional to high-dose methotrexate for primary central nervous system lymphoma (PCNSL). Protocols: Wiley-Blackwell; 1996.

    Google Scholar 

  63. Tower RL, Jones TL, Camitta BM, Asselin BL, Bell BA, Chauvenet A, Devidas M, Halperin EC, Pullen J, Shuster JJ, Winick N, Kurtzberg J. Dose intensification of methotrexate and cytarabine during intensified continuation chemotherapy for high-risk B-precursor acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2014;36(5):353–61. doi:10.1097/mph.0000000000000131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Connor OA, Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B, Jo Lechowicz M, Savage KJ, Shustov AR, Gisselbrecht C, Jacobsen E, Zinzani PL, Furman R, Goy A, Haioun C, Crump M, Zain JM, Hsi E, Boyd A, Horwitz S. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011;29(9):1182–9. doi:10.1200/jco.2010.29.9024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gottlieb AJ, Anderson JR, Ginsberg SJ, Bloomfield CD, Norton L, Barcos M, Peterson BA, Nissen N, Henderson ES, Holland JF. A randomized comparison of methotrexate dose and the addition of bleomycin to chop therapy for diffuse large cell lymphoma and other non-Hodgkin’s lymphomas cancer and leukemia group B study 7851. Cancer. 1990;66(9):1888–96. doi:10.1002/1097-0142(19901101)66:9<1888::aid-cncr2820660906>3.0.co;2-k.

    Article  CAS  PubMed  Google Scholar 

  66. Collis CH. Lung damage from cytotoxic drugs. Cancer Chemother Pharmacol. 1980;4(1). doi:10.1007/bf00255453.

  67. Derenzini E, Stefoni V, Pellegrini C, Fina MP, Broccoli A, Venturini F, Gandolfi L, Pileri SA, Martelli M, Petti MC, Perrotti A, De Renzo A, Zaja F, Baccarani M, Zinzani PL. Cyclophosphamide, doxorubicin, vincristine, methotrexate, bleomicin and prednisone plus rituximab in untreated young patients with low-risk (age-adjusted international prognostic index 0–1) diffuse large B-cell lymphoma. Leukemia & Lymphoma. 2009;50(11):1824–9. doi:10.3109/10428190903216796.

    Article  CAS  Google Scholar 

  68. Choueiri TK, Jacobus S, Bellmunt J, Qu A, Appleman LJ, Tretter C, Bubley GJ, Stack EC, Signoretti S, Walsh M, Steele G, Hirsch M, Sweeney CJ, Taplin ME, Kibel AS, Krajewski KM, Kantoff PW, Ross RW, Rosenberg JE. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J Clin Oncol. 2014;32(18):1889–94. doi:10.1200/jco.2013.52.4785.

    Article  CAS  PubMed  Google Scholar 

  69. Kano Y, Akutsu M, Tsunoda S, Izumi T, Mori K, Fujii H, Yazawa Y, Mano H, Furukawa Y. Schedule-dependent synergism and antagonism between pemetrexed and paclitaxel in human carcinoma cell lines in vitro. Cancer Chemother Pharmacol. 2004;54(6):505–13. doi:10.1007/s00280-004-0839-5.

    Article  CAS  PubMed  Google Scholar 

  70. Halim A, Abotouk N. Methotrexate-paclitaxel-epirubicin-carboplatin as second-line chemotherapy in patients with metastatic transitional cell carcinoma of the bladder pretreated with cisplatin-gemcitabine: a phase II study. Asia-Pacific Journal of Clinical Oncology. 2012;9(1):60–5. doi:10.1111/j.1743-7563.2012.01554.x.

    Article  PubMed  Google Scholar 

  71. Pectasides D, Pectasides E, Papaxoinis G, Xiros N, Kamposioras K, Tountas N, Economopoulos T. Methotrexate, paclitaxel, ifosfamide, and cisplatin in poor-risk nonseminomatous germ cell tumors. Urologic Oncology: Seminars and Original Investigations. 2010;28(6):617–23. doi:10.1016/j.urolonc.2008.10.013.

    Article  CAS  PubMed  Google Scholar 

  72. Jacot W, Gerlotto-Borne M-C, Thezenas S, Pouderoux S, Poujol S, About M, Romieu G. Carmustine and methotrexate in combination after whole brain radiation therapy in breast cancer patients presenting with brain metastases: a retrospective study. BMC Cancer. 2010;10(1). doi:10.1186/1471-2407-10-257.

  73. Helms SR, Oblon DJ, Braylan RC, et al. Etoposide, carmustine, bleomycin, and methotrexate with leucovorin rescue as re-treatment for unfavorable non-Hodgkin’s lymphoma. Cancer Treat Rep. 1985;69(7–8):783–6.

    CAS  PubMed  Google Scholar 

  74. Pham CQ, Efros CB, Berardi RR. Cyclosporine for severe ulcerative colitis. Ann Pharmacother. 2006;40:96–101.

    Article  CAS  PubMed  Google Scholar 

  75. Freeman DJ. Pharmacology and pharmacokinetics of cyclosporine. Clin Biochem. 1991;24(1):9–14. doi:10.1016/0009-9120(91)90084-r.

    Article  CAS  PubMed  Google Scholar 

  76. Balint A, Farkas K, Fau ‑ Szucs M, Szucs M, Fau ‑ Szepes Z, Szepes Z, Fau ‑ Nagy F, Nagy F, Fau ‑ Wittmann T, Wittmann T, Fau ‑ Molnar T, Molnar T. Long-term increase in serum cholesterol levels in ulcerative colitis patients treated with cyclosporine: an underdiagnosed side effect frequently associated with other drug-related complications. Scand J Gastroenterol. 2014;49(1):58–65.

    Google Scholar 

  77. Sternthal MB, Murphy SJ, George J, Kornbluth A, Lichtiger S, Present DH. Adverse events associated with the use of cyclosporine in patients with inflammatory bowel disease. Am J Gastroenterol. 2008;103(4):937–43.

    Article  CAS  PubMed  Google Scholar 

  78. Finsterer J, Ohnsorge P. Influence of mitochondrion-toxic agents on the cardiovascular system. Regul Toxicol Pharmacol. 2013;67(3):434–45.

    Article  CAS  PubMed  Google Scholar 

  79. Helgason H, Koolen S, Werkhoven E, Malingre M, Kruijtzer CM, Huitema A, Schot M, Smit W, Beijnen J, Schellens J. Phase II and pharmacological study of oral docetaxel plus cyclosporin a in anthracycline pre-treated metastatic breast cancer. Curr Clin Pharmacol. 2014;9(2):139–47. doi:10.2174/1574884708666131111193403.

    Article  CAS  PubMed  Google Scholar 

  80. Malingre MM, Ten Bokkel Huinink WW, Schellens JHM, Beijnen JH, Mackay M. Pharmacokinetics of oral cyclosporin A when co-administered to enhance the absorption of orally administered docetaxel. Eur J Clin Pharmacol. 2001;57(4):305–7. doi:10.1007/s002280100315.

    Article  CAS  PubMed  Google Scholar 

  81. Deng L, Su TT, Huang XL. Co-delivery of paclitaxel and cyclosporine by a novel liposome-solica hybrid nano-carrier for anti-tumor therapy via oral route. Yao Xue Xue Bao. 2014;49(1):106–14.

    CAS  PubMed  Google Scholar 

  82. Lee NY, Lee HE, Kang YS. Identification of P-glycoprotein and transport mechanism of paclitaxel in syncytiotrophoblast cells. Biomolecules and Therapeutics. 2014;22(1):68–72. doi:10.4062/biomolther.2013.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nadir Y, Hoffman R, Brenner B. Drug-related thrombosis in hematologic malignancies. Rev Clin Exp Hematol. 2004;8(1):E4.

    PubMed  Google Scholar 

  84. Feun L, Marini A, Moffat F, Savaraj N, Hurley J, Mazumder A. Cyclosporine a, alpha-interferon and interleukin-2 following chemotherapy with BCNU, DTIC, cisplatin, and tamoxifen: a phase II study in advanced melanoma. Cancer Investig. 2005;23(1):3–8. doi:10.1081/cnv-46368.

    Article  CAS  Google Scholar 

  85. González-Manzano R, Cid J, Brugarolas A, Piasecki CC. Cyclosporin a and doxorubicin-ifosfamide in resistant solid tumours: a phase I and an immunological study. Br J Cancer. 1995;72(5):1294–9. doi:10.1038/bjc.1995.503.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Moore D, Swan F, Yau J, Rodriguez M, McLaughlin P, Sarris A, Romaguera J, Younes A, Hagemeister F, Cabanillas F. Cyclosporin plus doxorubicin, vincristine and etoposide in the treatment of refractory non-Hodgkin’s lymphoma: a phase II study. Clin Oncol. 1995;7(5):300–3. doi:10.1016/s0936-6555(05)80537-0.

    Article  CAS  Google Scholar 

  87. Gharanei M, Hussain A, James RS, Janneh O, Maddock H. Investigation into the cardiotoxic effects of doxorubicin on contractile function and the protection afforded by cyclosporin A using the work-loop assay. Toxicol in Vitro. 2014;28(5):722–31. doi:10.1016/j.tiv.2014.01.011.

    Article  CAS  PubMed  Google Scholar 

  88. Ren Y, Yang H, Zhu P, et al. Effect of CsA bleomycin-induced interstitial pulmonary disease in mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28(3):232–6.

    CAS  PubMed  Google Scholar 

  89. Lossos IS, Or R, Goldstein RH, Conner MW, Breuer R. Amelioration of bleomycin-induced pulmonary injury by cyclosporin a. Exp Lung Res. 1996;22(3):337–49. doi:10.3109/01902149609031779.

    Article  CAS  PubMed  Google Scholar 

  90. Chen TL, Estey EH, Othus M, Gardner KM, Markle LJ, Walter RB. Cyclosporine modulation of multidrug resistance in combination with pravastatin, mitoxantrone and etoposide for adult patients with relapsed/refractory acute myeloid leukemia: a phase 1/2 study. Leukemia & Lymphoma. 2013;54(11):2534–6. doi:10.3109/10428194.2013.777836.

    Article  CAS  Google Scholar 

  91. Lacayo NJ, Lum BL, Becton DL, Weinstein H, Ravindranath Y, Chang MN, Bomgaars L, Lauer SJ, Sikic BI, Dahl GV. Pharmacokinetic interactions of cyclosporine with etoposide and mitoxantrone in children with acute myeloid leukemia. Leukemia. 2002;16(5):920–7. doi:10.1038/sj.leu.2402455.

    Article  CAS  PubMed  Google Scholar 

  92. Chao NJ, Aihara M, Blume KG, Sikic BI. Modulation of etoposide (VP-16) cytotoxocity by verapamil or cyclosporine in multidrug-resistant human leukemic cell lines and normal bone marrow. Exp Hematol. 1990;18(11):1193–8.

    CAS  PubMed  Google Scholar 

  93. Carcel-Trullols J, Torres-Molina F, Araico A, Saadeddin A, Peris JE. Effect of cyclosporine A on the tissue distribution and pharmacokinetics of etoposide. Cancer Chemother Pharmacol. 2004;54(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  94. Dahl GV, Lacayo NJ, Brophy N, et al. Mitoxantrone, etoposide, and cyclosporine therapy in pediatric patients with recurrent or refractory acute myeloid leukemia. J Clin Oncol. 2000;18(9):1867–75.

    CAS  PubMed  Google Scholar 

  95. Bisogno G, Cowie F, Boddy A, Thomas HD, Dick G, Pinkerton CR. High-dose cyclosporin with etoposide—toxicity and pharmacokinetic interaction in children with solid tumours. Br J Cancer. 1998;77(12):2304–9. doi:10.1038/bjc.1998.383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schmid T, Hechenleitner P, Mark W, Fischer M, Roberts K, Geisen F, Klima G, Dietze O, Konwalinka G, Margreiter R. 2-Chlorodeoxyadenosine (cladribine) in combination with low-dose cyclosporin prevents rejection after allogeneic heart and liver transplantation in the rat. Eur Surg Res. 1998;30(1):61–8. doi:10.1159/000008559.

    Article  CAS  PubMed  Google Scholar 

  97. Halaburda K, Marianska B, Warzocha K, et al. Clinical evaluation of busulfan, cladribine and alemtuzumab as reduced intensity conditioning for stem cell transplantation. Ann Transplant. 2009;14(2):7–12.

    CAS  PubMed  Google Scholar 

  98. Tsimberidou AM, Estey E, Cortes JE, Garcia-Manero G, Faderl S, Verstovsek S, Thomas DA, Ferrajoli A, Keating MJ, O’Brien S, Kantarjian HM, Giles FJ. Mylotarg, fludarabine, cytarabine (ara-C), and cyclosporine (MFAC) regimen as post-remission therapy in acute myelogenous leukemia. Cancer Chemother Pharmacol. 2003;52(6):449–52. doi:10.1007/s00280-003-0671-3.

    Article  CAS  PubMed  Google Scholar 

  99. Tsimberidou A, Estey E, Cortes J, et al. Gemtuzumab, fludarabine, cytarabine, and cyclosporine in patients with newly diagnosed acute myelogenous leukemia or high-risk myelodysplastic syndromes. Cancer. 2003;97(6):1481–7.

    Article  CAS  PubMed  Google Scholar 

  100. Lin CJ, Lee CC, Shih YL, Lin CH, Wang SH, Chen TH, Shih CM. Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One. 2012;7(6):e38706. doi:10.1371/journal.pone.0038706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zappasodi P, Vitulo P, Volpini E, Castagnola C, Nascimbene C, Corso A. Successful therapy with high-dose steroids and cyclosporine for the treatment of carmustine-mediated lung injury. Ann Hematol. 2002;81(6):347–9. doi:10.1007/s00277-002-0464-5.

    Article  CAS  PubMed  Google Scholar 

  102. Christopoulos P, Bertz H, Ihorst G, Marks R, Wäsch R, Finke J. Radiation-free allogeneic conditioning with fludarabine, carmustine, and thiotepa for acute lymphoblastic leukemia and other hematologic malignancies necessitating enhanced central nervous system activity. Biology of Blood and Marrow Transplantation. 2012;18(9):1430–7. doi:10.1016/j.bbmt.2012.02.016.

    Article  CAS  PubMed  Google Scholar 

  103. Cohen LB, Nanau RM, Delzor F, Neuman MG. Biologic therapies in inflammatory bowel disease. Transl Res. 2014;163(6):533–56. doi:10.1016/j.trsl.2014.01.002.This article reviews the efficacy and pharmacokinetics of various biological therapies for IBD, as well as the purpose of serum drug monitoring

    Article  CAS  PubMed  Google Scholar 

  104. Klotz U, Teml A, Schwab M. Clinical pharmacokinetics and use of infliximab. Clin Pharmacokinet. 2007;46(8):645–60.

    Article  CAS  PubMed  Google Scholar 

  105. Honghui Z, Mascelli MA. Mechanisms of monoclonal antibody-drug interactions. Annu Rev Pharmacol Toxicol. 2011;51:359–72.

    Article  CAS  Google Scholar 

  106. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL, Tang KL, van der Woude CJ, Rutgeerts P. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95. doi:10.1056/nejmoa0904492.

    Article  CAS  PubMed  Google Scholar 

  107. Siegel CA, Marden SM, Persing SM, Larson RJ, Sands BE. Risk of lymphoma associated with combination anti-tumor necrosis factor and immunomodulator therapy for the treatment of Crohn’s disease: a meta-analysis. Clin Gastroenterol Hepatol. 2009;7(8):875–81.

    Article  CAS  Google Scholar 

  108. Kouklakis G, Efremidou EI, Pitiakoudis M, Liratzopoulos N, Polychronidis AC. Development of primary malignant melanoma during treatment with a TNF-alpha antagonist for severe Crohn’s disease: a case report and review of the hypothetical association between TNF-alpha blockers and cancer. Drug Design, Development and Therapy. 2013;7:195–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Slordal L, Spigset O. Heart failure induced by non-cardiac drugs. Drug Saf. 2006;29(7):567–86.

    Article  PubMed  Google Scholar 

  110. Weimer LH, Sachdev N. Update on medication-induced peripheral neuropathy. Current Neurology and Neuroscience Reports. 2008;9(1):69–75. doi:10.1007/s11910-009-0011-z.

    Article  Google Scholar 

  111. Scalici JM, Harrer C, Allen A, et al. Inhibition of α4β1 integrin increases ovarian cancer response to carboplatin. Gynecol Oncol. 2014;132(2):455–61.

    Article  CAS  PubMed  Google Scholar 

  112. McLean LP, Shea-Donohue T, Cross RK. Vedolizumab for the treatment of ulcerative colitis and Crohn’s disease. Immunotherapy. 2012;4(9):883–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE, Lukas M, Fedorak RN, Lee S, Bressler B, Fox I, Rosario M, Sankoh S, Xu J, Stephens K, Milch C, Parikh A, GEMINI 2 Study Group. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369(8):711–21.

    Article  CAS  PubMed  Google Scholar 

  114. Parikh A, Leach T, Wyant T, Scholz C, Sankoh S, Mould DR, Ponich T, Ponich T, Fox I, Feagan BG. Vedolizumab for the treatment of active ulcerative colitis: a randomized controlled phase 2 dose-ranging study. Inflamm Bowel Disease. 2012;18(8):1470–9.

    Article  Google Scholar 

  115. Rosario M, Dirks NL, Gastonguay MR, Fasanmade AA, Wyant T, Parikh A, Sandborn WJ, Feagan BG, Reinisch W, Fox I. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol Ther. 2015;42(2):188–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lam MC, Bressler B. Vedolizumab for ulcerative colitis and Crohn’s disease: results and implications of GEMINI studies. Immunotherapy. 2014;6(9):963–71.

    Article  CAS  PubMed  Google Scholar 

  117. Luthra P, Peyrin-Biroulet L, Ford AC. Systematic review and meta-analysis: opportunistic infections and malignancies during treatment with anti-integrin antibodies in inflammatory bowel disease. Aliment Pharmacol Ther. 2015;41(12):1227–36.

    Article  CAS  PubMed  Google Scholar 

  118. Lobaton T, Vermeire S, Van Assche G, Rutgeerts P. Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2014;39(6):579–94.

    Article  CAS  PubMed  Google Scholar 

  119. Fraser AG. Methotrexate. First-line or second-line immunomodulator? Gastroenterol Hepatol. 2003;15:225–31.

    CAS  Google Scholar 

  120. Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, Sands BE, Hanauer SB, Targan S, Rutgeerts P, Ghosh S, De Villiers WJ, Panaccione R, Greenberg G, Schreiber S, Lichtiger S, Feagan BG, CERTIFI Study Group. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;18(367):1519–28.

    Article  CAS  Google Scholar 

  121. Wils P, Bouhnik Y, Michetti P, Flourie B, Brixi H, Bourrier A, Allez M, Duclos B, Grimaud JC, Buisson A, Amiot A, Fumery M, Roblin X, Peyrin-Biroulet L, Filippi J, Bouquen G, Abitbol V, Coffin B, Simon M, Laharie D, Pariente B, Group d’Etude Therapeutique des Affections Inflammatoires de Tube Digestif (GETAID). Subcutaneous Ustekinumab provides benefit for two-thirds of patients with Crohn’s disease refractory to anti-tumor necrosis factor agents. Clin Gastroenterol Hepatol. 2016;14(2):242–50.

  122. Ryan C, Thrash B, Warren RB, Menter A. The use of ustekinumab in autoimmune disease. Expert Opin Biol Ther. 2010;10(4):587–604.

    Article  CAS  PubMed  Google Scholar 

  123. Kauffman CL, Aria N, Toichi E, McCormick TS, Cooper KD, Gottlieb AB, Everitt DE, Frederick B, Zhu Y, Graham MA, Pendley CE, Mascelli MA. A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol. 2004;123(6):1037–44.

    Article  CAS  PubMed  Google Scholar 

  124. Gottlieb AB, Cooper KD, McCormick TS, Toichi E, Everitt DE, Frederick B, Zhu Y, Pendley CE, Graham MA, Mascelli MA. A phase 1, double-blind, placebo-controlled study evaluating single subcutaneous administrations of a human interleukin-12/23 monoclonal antibody in subjects with plaque psoriasis. Curr Med Res Opin. 2007;23(5):1081–92.

    Article  CAS  PubMed  Google Scholar 

  125. Zhu Y, Wang Q, Frederick B, Bouman-Thio E, Marini JC, Keen M, Petty KJ, David HM, Zhou H. Comparison of the pharmacokinetics of subcutaneous ustekinumab between Chinese and non-Chinese healthy male subjects aross two phase 1 studies. Clin Drug Investiq. 2013;33(4):291–301.

    Article  CAS  Google Scholar 

  126. Alper JC, Wiemann MC, Rueckl FS, McDonald CJ, Calabresi P. Rationally designed combination chemotherapy for the treatment of patients with recalcitrant psoriasis. J Am Acad Dermatol. 1985;13(4):567–77.

    Article  CAS  PubMed  Google Scholar 

  127. Stein A, Voigt W, Jordan K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol. 2010;2(1):51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Walko CM, Lindley C. Capecitabine: a review. Clin Ther. 2005;27(1):23–44.

    Article  CAS  PubMed  Google Scholar 

  129. Iacovelli R, Pietrantonio F, Palazzo A, Maggi C, Ricchini F, de Braud F, Di Bartolomeo M. Incidence and relative risk of grade 3 and 4 diarrhoea in patients treated with capecitabine or 5-fluorouracil: a meta-analysis of published trials. Br J Clin Pharmacol. 2014;78(6):1228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beroukhim K et al. A case report of heart failure after therapy with ustekinumab. Jour of Derm and Der surg. 2015;19(2):117–9.

    Google Scholar 

  131. Jiang G, Li RH, Sun C, Liu YQ, Zheng JN. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: a meta-analysis. PLoS One. 2014;9(12):e111920. doi:10.1371/journal.pone.0111920.

  132. Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008;358(23):2482–2494. doi:10.1056/NEJMra0706547.

  133. Wolchok JD, Williams L, Pinto JT, Fleisher M, Krown SE, Hwu WJ, Livingston PO, Chang C, Chapman PB. Phase I trial of high dose paracetamol and carmustine in patients with metastatic melanoma. Melanoma Res. 2003;13(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  134. Ma C, Armstrong AQ. Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilumumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2. J Dermatolog Treat. 2014;25(5):401–8.

    Article  PubMed  CAS  Google Scholar 

  135. Cheng R, Cooper A, Kench J, Watson G, Bye W, McNeil C, Shackel N. Ipilimumab-induced toxicities and the gastroenterologist. J Gastroenterol Hepatol. 2015;30(4):657–66.

  136. Plaza-Diaz J, Carolina G-L, Luis F, Angel G. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol. 2014;20(42):15632–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen X, Yang G, Song JH, Xu H, Li D, Goldsmith J, Zeng H, Parsons-Wingerter PA, Reinecker HC, Kelly CP. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS One. 2013;13(8):5.

    Google Scholar 

  138. Grompone G, Martorell P, Llopis S, Gonzalez N, Genoves S, Mulet AP, Fernandez-Calero T, Tiscornia I, Bollati-Fogolin M, Chambaud I, Foligne B, Montserrat A, Ramon D. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One. 2012;7(12):e52493. doi:10.1371/journal.pone.0052493.

  139. Boyle RJ, Robins-Browne RM, Tang ML. Probiotic use in clinical practice: what are the risks? Am J Clin Nutr. 2006;83:1256–64.

    CAS  PubMed  Google Scholar 

  140. Snydman DR. The safety of probiotics. Clin Infect Dis. 2008;46:104–11.

    Article  Google Scholar 

  141. Redman MG, Ward EJ, Phillips RS. The efficacy and safety of probiotics in people with cancer: a systematic review. Ann Oncol. 2014;25:1919–29 This systematic review discusses the use of probiotics in reducing chemotherapy-related diarrhea and their safety and risks.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seymour Katz M.D., F.A.C.P.

Ethics declarations

Conflict of Interest

Galen Leung, Marianna Papademetriou, and Shannon Chang declare that they have no conflict of interest.

Francis Arena has received Speaker's Bureau fees from Celgene, Amgen, Merck, Bayer and Alexion.

Seymour Katz has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

A special thank you to Dr. Gary Falk for taking the time to review this manuscript.

This article is part of the Topical Collection on Intractable Disease in the Elderly: When Conventional Therapy Fails

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, G., Papademetriou, M., Chang, S. et al. Interactions Between Inflammatory Bowel Disease Drugs and Chemotherapy. Curr Treat Options Gastro 14, 507–534 (2016). https://doi.org/10.1007/s11938-016-0109-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-016-0109-8

Keywords

Navigation