Skip to main content

Advertisement

Log in

Management of Percutaneous Coronary Intervention Complications

  • Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

With the recent increase in complex coronary interventions including percutaneous coronary intervention (PCI) for chronic total occlusions and complex higher risk (and indicated) patients, the spectrum of potential periprocedural complications and their prompt management has become even more relevant. Vascular access-related problems remain the most prevalent of all PCI complications and with randomized controlled trial data from over 20,000 patients supporting the superiority of radial over femoral access in reducing bleeding and vascular complications, a default radial strategy should be promoted. The European Society of Cardiology guidelines have acknowledged this by giving a class 1 (level of evidence: A) recommendation for a radial approach for PCI. The US society guidelines, however, have thus far lagged behind. Each individual patient undergoing a PCI should be risk-stratified objectively using available risk prediction models based on patient comorbidities and anatomical and procedural complexities. Customized informed consent should therefore be provided to all patients and should include the potential risks from radiation injury. Here, we review the current data related to common periprocedural complications related to PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Webber GW, Jang J, Gustavson S, Olin JW. Contemporary management of postcatheterization pseudoaneurysms. Circulation. 2007;115(20):2666–74. doi:10.1161/circulationaha.106.681973.

    Article  PubMed  Google Scholar 

  2. Petersen JCM, Insua JJV. Pseudoaneurysm after transradial coronary angiography. New England Journal of Medicine N Engl J Med. 2015;373(14):1361–1. doi:10.1056/nejmicm1406093.

  3. Babunashvili AM, Pancholy SB, Kartashov DS. New technique for treatment of postcatheterization radial artery pseudoaneurysm. Catheter Cardiovasc Interv. 2016. doi:10.1002/ccd.26717.

    PubMed  PubMed Central  Google Scholar 

  4. Kent K, Mcardle CR, Kennedy B, Baim DS, Anninos E, Skillman JJ. A prospective study of the clinical outcome of femoral pseudoaneurysms and arteriovenous fistulas induced by arterial puncture. J Vasc Surg. 1993;17(1):125–33. doi:10.1016/0741-5214(93)90016-f.

    Article  CAS  PubMed  Google Scholar 

  5. Toursarkissian B, Allen BT, Petrinec D, et al. Spontaneous closure of selected iatrogenic pseudoaneurysms and arteriovenous fistulae. J Vasc Surg. 1997;25(5):803–9. doi:10.1016/s0741-5214(97)70209-x.

    Article  CAS  PubMed  Google Scholar 

  6. Dzijan-Horn M, Langwieser N, Groha P, et al. Safety and efficacy of a potential treatment algorithm by using manual compression repair and ultrasound-guided thrombin injection for the management of iatrogenic femoral artery pseudoaneurysm in a large patient cohort. Circ Cardiovasc Interv. 2014;7(2):207–15. doi:10.1161/circinterventions.113.000836.

    Article  CAS  PubMed  Google Scholar 

  7. Cauchi MP, Robb PM, Zemple RP, Ball TC. Radial artery pseudoaneurysm: a simplified treatment method. J Ultrasound Med. 2014;33(8):1505–9. doi:10.7863/ultra.33.8.1505.

    Article  PubMed  Google Scholar 

  8. Collins N, Wainstein R, Ward M, Bhagwandeen R, Dzavik V. Pseudoaneurysm after transradial cardiac catheterization: case series and review of the literature. Catheter Cardiovasc Interv. 2011;80(2):283–7. doi:10.1002/ccd.23216.

    Article  PubMed  Google Scholar 

  9. Mogi S, Maekawa Y, Fukuda K, Noma S. Retroperitoneal bleeding and arteriovenous fistula after percutaneous coronary intervention successfully treated with intravascular ultrasound-guided covered stent implantation. Intern Med. 2016;55(11):1467–9. doi:10.2169/internalmedicine.55.6134.

    Article  PubMed  Google Scholar 

  10. Trimarchi S, Smith DE, Share D, et al. Retroperitoneal hematoma after percutaneous coronary intervention: prevalence, risk factors, management, outcomes, and predictors of mortality. J Am Coll Cardiol Intv. 2010;3(8):845–50. doi:10.1016/j.jcin.2010.05.013.

    Article  Google Scholar 

  11. Kelm M, Perings SM, Jax T, et al. Incidence and clinical outcome of iatrogenic femoral arteriovenous fistulas. J Am Coll Cardiol. 2002;40(2):291–7. doi:10.1016/s0735-1097(02)01966-6.

    Article  PubMed  Google Scholar 

  12. Na KJ, Kim MA, Moon HJ, Lee JS, Choi J-S. Radial arteriovenous fistula developed late after coronary angiography: a case report. Korean J Thorac Cardiovasc Surg. 2012;45(6):421–3. doi:10.5090/kjtcs.2012.45.6.421.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seto AH, Abu-Fadel MS, Sparling JM, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications. J Am Coll Cardiol Intv. 2010;3(7):751–8. doi:10.1016/j.jcin.2010.04.015.

    Article  Google Scholar 

  14. Seto AH, Roberts JS, Abu-Fadel MS, et al. Real-time ultrasound guidance facilitates transradial access. J Am Coll Cardiol Intv. 2015;8(2):283–91. doi:10.1016/j.jcin.2014.05.036.

    Article  Google Scholar 

  15. Dauerman HL, Rao SV, Resnic FS, Applegate RJ. Bleeding avoidance strategies. J Am Coll Cardiol. 2011;58(1):1–10. doi:10.1016/j.jacc.2011.02.039.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Applegate RJ, Sacrinty MT, Kutcher MA, et al. Trends in vascular complications after diagnostic cardiac catheterization and percutaneous coronary intervention via the femoral artery, 1998 to 2007. J Am Coll Cardiol Intv. 2008;1(3):317–26. doi:10.1016/j.jcin.2008.03.013.

    Article  Google Scholar 

  17. Doyle BJ, Ting HH, Bell MR, et al. Major femoral bleeding complications after percutaneous coronary intervention. J Am Coll Cardiol Intv. 2008;1(2):202–9. doi:10.1016/j.jcin.2007.12.006.

    Article  Google Scholar 

  18. Ratib K, Mamas MA, Anderson SG, et al. Access site practice and procedural outcomes in relation to clinical presentation in 439,947 patients undergoing percutaneous coronary intervention in the United Kingdom. J Am Coll Cardiol Intv. 2015;8(1):20–9. doi:10.1016/j.jcin.2014.06.026.

    Article  Google Scholar 

  19. Ferrante G, Rao SV, Jüni P, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease. J Am Coll Cardiol Intv. 2016;9(14):1419–34. doi:10.1016/j.jcin.2016.04.014.

    Article  Google Scholar 

  20. •• Bernat I, Horak D, Stasek J, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial. J Am Coll Cardiol. 2014;63(10):964–72. doi:10.1016/j.jacc.2013.08.1651. The STEMI-RADIAL randomized multicenter trial compared both radial and femoral access outcomes in STEMI patients at high-volume centers. Radial use was associated with less major bleeding and access-related complications when compared to the femoral approach.

    Article  PubMed  Google Scholar 

  21. Romagnoli E, Biondi-Zoccai G, Sciahbasi A, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2012;60(24):2481–9. doi:10.1016/j.jacc.2012.06.017.

    Article  PubMed  Google Scholar 

  22. Wagener JF, Rao SV. Radial artery occlusion after transradial approach to cardiac catheterization. Current Atherosclerosis Reports. 2015;17(3). doi:10.1007/s11883-015-0489-6.

  23. Rashid M, Kwok CS, Pancholy S, et al. Radial artery occlusion after transradial interventions: a systematic review and meta‐analysis. J Am Heart Assoc Journal of the American Heart Association. 2016;5(1). doi:10.1161/jaha.115.002686.

  24. Rao SV, Tremmel JA, Gilchrist IC, et al. Best practices for transradial angiography and intervention: a consensus statement from the society for cardiovascular angiography and intervention’s transradial working group. Catheter Cardiovasc Interv. 2013;83(2):228–36. doi:10.1002/ccd.25209.

    Article  PubMed  Google Scholar 

  25. Dharma S, Kedev S, Patel T, Kiemeneij F, Gilchrist IC. A novel approach to reduce radial artery occlusion after transradial catheterization: postprocedural/prehemostasis intra-arterial nitroglycerin. Catheter Cardiovasc Interv. 2014;85(5):818–25. doi:10.1002/ccd.25661.

    Article  PubMed  Google Scholar 

  26. Pancholy SB, Bernat I, Bertrand OF, Patel TM. Prevention of radial artery occlusion after transradial catheterization. J Am Coll Cardiol Intv. 2016;9(19):1992–9. doi:10.1016/j.jcin.2016.07.020.

    Article  Google Scholar 

  27. Bernat I, Bertrand OF, Rokyta R, et al. Efficacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization. Am J Cardiol. 2011;107(11):1698–701. doi:10.1016/j.amjcard.2011.01.056.

    Article  PubMed  Google Scholar 

  28. Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–51. doi:10.1161/CIRCULATIONAHA.106.685313.

    Article  PubMed  Google Scholar 

  29. Kedhi E, Joesoef KS, Mcfadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet. 2010;375(9710):201–9. doi:10.1016/s0140-6736(09)62127-9.

    Article  CAS  PubMed  Google Scholar 

  30. Serruys PW, Silber S, Garg S, et al. Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N Engl J Med. 2010;363(2):136–46. doi:10.1056/nejmoa1004130.

    Article  CAS  PubMed  Google Scholar 

  31. D’ascenzo F, Bollati M, Clementi F, et al. Incidence and predictors of coronary stent thrombosis: evidence from an international collaborative meta-analysis including 30 studies, 221,066 patients, and 4276 thromboses. Int J Cardiol. 2013;167(2):575–84. doi:10.1016/j.ijcard.2012.01.080.

    Article  PubMed  Google Scholar 

  32. Cutlip DE, Kereiakes DJ, Mauri L, Stoler R, Dauerman HL. Thrombotic complications associated with early and late nonadherence to dual antiplatelet therapy. J Am Coll Cardiol Intv. 2015;8(3):404–10. doi:10.1016/j.jcin.2014.10.017.

    Article  Google Scholar 

  33. Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction. N Engl J Med. 2008;358(21):2218–30. doi:10.1056/nejmoa0708191.

    Article  CAS  PubMed  Google Scholar 

  34. Steg PG, Hof AV’t, Hamm CW, et al. Bivalirudin started during emergency transport for primary PCI. N Engl J Med. 2013;369(23):2207–17. doi:10.1056/nejmoa1311096.

    Article  CAS  PubMed  Google Scholar 

  35. Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. Circulation. 2015;133(11):1135–47. doi:10.1161/cir.0000000000000336.

    Article  PubMed  Google Scholar 

  36. Waldo SW, Armstrong EJ, Yeo K-K, et al. Procedural success and long-term outcomes of aspiration thrombectomy for the treatment of stent thrombosis. Catheter Cardiovasc Interv. 2013;82(7):1048–53. doi:10.1002/ccd.25007.

    Article  PubMed  Google Scholar 

  37. Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with absorb bioresorbable vascular scaffold. J Am Coll Cardiol Intv. 2016;9(1):12–24. doi:10.1016/j.jcin.2015.09.024.

    Article  Google Scholar 

  38. Colombo A, Ruparelia N. Who is thrombogenic: the scaffold or the doctor? back to the future! J Am Coll Cardiol Intv. 2016;9(1):25–7. doi:10.1016/j.jcin.2015.09.021.

    Article  Google Scholar 

  39. Felix CM, Fam JM, Diletti R, et al. Mid- to long-term clinical outcomes of patients treated with the everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol Intv. 2016;9(16):1652–63. doi:10.1016/j.jcin.2016.04.035.

    Article  Google Scholar 

  40. Attizzani GF, Capodanno D, Ohno Y, Tamburino C. Mechanisms, pathophysiology, and clinical aspects of incomplete stent apposition. J Am Coll Cardiol. 2014;63(14):1355–67. doi:10.1016/j.jacc.2014.01.019.

    Article  PubMed  Google Scholar 

  41. Hassan AKM, Bergheanu SC, Stijnen T, et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur Heart J. 2009;31(10):1172–80. doi:10.1093/eurheartj/ehn553.

    Article  PubMed  Google Scholar 

  42. Kan J, Ge Z, Zhang J-J, et al. Incidence and clinical outcomes of stent fractures on the basis of 6,555 patients and 16,482 drug-eluting stents from 4 centers. J Am Coll Cardiol Intv. 2016;9(11):1115–23. doi:10.1016/j.jcin.2016.02.025.

    Article  Google Scholar 

  43. Lee SE, Jeong MH, Kim IS, et al. Clinical outcomes and optimal treatment for stent fracture after drug-eluting stent implantation. J Cardiol. 2009;53(3):422–8. doi:10.1016/j.jjcc.2009.02.010.

    Article  PubMed  Google Scholar 

  44. •• Claessen BE, Henriques JPS, Jaffer FA, et al. Stent thrombosis. J Am Coll Cardiol Intv. 2014;7(10):1081–92. doi:10.1016/j.jcin.2014.05.016. This thorough review of stent thrombosis describes the pathophysiology and possible predictors of this complication. Claessen et al. provide etiology-directed treatment strategies for several complications that result in stent thrombosis including stent fracture, malapposition, and underexpansion.

    Article  Google Scholar 

  45. Devidutta S, Yeo KK. Acute stent thrombosis due to stent underexpansion managed with rotational atherectomy. Cardiovasc Revasc Med. 2016;17(1):66–70. doi:10.1016/j.carrev.2015.10.003.

    Article  PubMed  Google Scholar 

  46. Huber MS, Mooney JF, Madison J, Mooney MR. Use of a morphologic classification to predict clinical outcome after dissection from coronary angioplasty. Am J Cardiol. 1991;68(5):467–71. doi:10.1016/0002-9149(91)90780-o.

    Article  CAS  PubMed  Google Scholar 

  47. Holmes DR, Holubkov R, Vlietstra RE, et al. Comparison of complications during percutaneous transluminal coronary angioplasty from 1977 to 1981 and from 1985 to 1986: The National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. J Am Coll Cardiol. 1988;12(5):1149–55. doi:10.1016/0735-1097(88)92593-4.

    Article  PubMed  Google Scholar 

  48. Furukawa MK, Domingues CEM, Almeida MCVD, Jr VRF, Jr DS. Use of tandem stents for treatment of helicoidal dissection of the right coronary artery. Arq Bras Cardiol Arquivos Brasileiros de Cardiologia. 2000;74(6). doi:10.1590/s0066-782x2000000600004.

  49. Chamié D, Bezerra HG, Attizzani GF, et al. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. J Am Coll Cardiol Intv. 2013;6(8):800–13. doi:10.1016/j.jcin.2013.03.019.

    Article  Google Scholar 

  50. Dunning DW, Kahn JK, Hawkins ET, O’neill WW. Iatrogenic coronary artery dissections extending into and involving the aortic root. Catheter Cardiovasc Interv. 2000;51(4):387–93. doi:10.1002/1522-726x(200012)51:4<387::aid-ccd3>3.3.co;2-2.

    Article  CAS  PubMed  Google Scholar 

  51. Ellis SG, Ajluni S, Arnold AZ, et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994;90(6):2725–30. doi:10.1161/01.cir.90.6.2725.

    Article  CAS  PubMed  Google Scholar 

  52. Fasseas P, Orford JL, Panetta CJ, et al. Incidence, correlates, management, and clinical outcome of coronary perforation: analysis of 16,298 procedures. Am Heart J. 2004;147(1):140–5. doi:10.1016/s0002-8703(03)00505-2.

    Article  PubMed  Google Scholar 

  53. Fejka M, Dixon SR, Safian RD, et al. Diagnosis, management, and clinical outcome of cardiac tamponade complicating percutaneous coronary intervention. Am J Cardiol. 2002;90(11):1183–6. doi:10.1016/s0002-9149(02)02831-x.

    Article  PubMed  Google Scholar 

  54. Eeckhout E, De Palma R. Coronary perforation. JACC: Cardiovascular Interventions. 2013;6(8):800–813. 2011;4(1):96–97. doi:10.1016/j.jcin.2010.09.021

  55. Chowdhury MA, Sheikh MA. Coronary bypass graft perforation during percutaneous intervention. Cardiovasc Revasc Med. 2016;17(1):48–53. doi:10.1016/j.carrev.2015.11.004.

    Article  PubMed  Google Scholar 

  56. Antoniucci D. Put Off Till Tomorrow What You Can Do Today. J Am Coll Cardiol. 2014;63(20):2099–100. doi:10.1016/j.jacc.2014.01.056.

    Article  PubMed  Google Scholar 

  57. Jaffe R, Dick A, Strauss BH. Prevention and treatment of microvascular obstruction-related myocardial injury and coronary no-reflow following percutaneous coronary intervention. J Am Coll Cardiol Intv. 2010;3(7):695–704. doi:10.1016/j.jcin.2010.05.004.

    Article  Google Scholar 

  58. Sardella G, Mancone M, Bucciarelli-Ducci C, et al. Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size. J Am Coll Cardiol. 2009;53(4):309–15. doi:10.1016/j.jacc.2008.10.017.

    Article  PubMed  Google Scholar 

  59. Stone GW. Distal microcirculatory protection during percutaneous coronary intervention in acute ST- segment elevation myocardial infarction: a randomized controlled trial. JAMA. 2005;293(9):1063. doi:10.1001/jama.293.9.1063.

    Article  CAS  PubMed  Google Scholar 

  60. O’gara PT, Kushner FG, Ascheim DD, et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;2012:127(4). doi:10.1161/cir.0b013e3182742cf6.

    Google Scholar 

  61. Bushberg JT. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  62. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305. doi:10.1161/CIRCULATIONAHA.107.688101.

    Article  PubMed  Google Scholar 

  63. Chambers CE, Fetterly KA, Holzer R, et al. Radiation safety program for the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2011;77(4):546–56. doi:10.1002/ccd.22867.

    Article  PubMed  Google Scholar 

  64. Stewart F, Akleyev A, Hauer-Jensen M, et al. ICRP PUBLICATION 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41(1–2):1–322. doi:10.1016/j.icrp.2012.02.001.

    Article  CAS  PubMed  Google Scholar 

  65. Agarwal S, Parashar A, Ellis SG, et al. Measures to reduce radiation in a modern cardiac catheterization laboratory. Circ Cardiovasc Interv. 2014;7(4):447–55. doi:10.1161/CIRCINTERVENTIONS.114.001499. Agarwal and colleagues showed that by decreasing the default fluoroscopic frame rate to 7.5 frames per second from 10, total air kerma and air kerma rates can be reduced in the modern catheterization lab.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kaul MD, FACC, FSCAI.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Artery Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Means, G., End, C. & Kaul, P. Management of Percutaneous Coronary Intervention Complications. Curr Treat Options Cardio Med 19, 25 (2017). https://doi.org/10.1007/s11936-017-0526-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0526-6

Keywords

Navigation