Skip to main content

Advertisement

Log in

Physician and Patient Radiation Exposure During Endovascular Procedures

  • Vascular Disease (I Weinberg, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Endovascular procedures expose both patients and physicians to fluoroscopic ionizing radiation that carries a dose-dependent risk of acute toxicity and a small, but demonstrable, long-term risk of malignancy due to resultant genetic mutations. Exposure doses vary widely based upon patient-related factors including body size and anatomic complexity, operator technique, procedure type (diagnostic vs. therapeutic), vascular bed imaged, and imaging equipment employed. Effective dosage may vary as much as 200-fold for physicians and 20-fold for patients depending upon the procedure: for example, complex aortic interventions with branched graft devices may convey mean effective doses of more than 0.4 mSv for physicians and 100 mSv for patients, whereas distal, small-vessel angiography may entail mean effective doses of less than 0.002 mSv for physicians and 5 mSv for patients. Particular attention is given to physicians’ ocular exposure, which may cause cataract development, and to hand exposure, which is significantly higher than total body exposure when operators work near the x-ray beam. Given the risks of radiation exposure, numerous strategies have been developed to reduce both physician and patient doses. These measures include physician education about dose-reducing imaging techniques, development of low-dose imaging equipment, introduction of new radiation shielding drapes and caps, and real-time dose monitoring. Here, we review physician and patient effective doses of radiation by procedure type as reported in the literature and present recent data regarding dose-reduction strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 2013;25(10):578–85. doi:10.1016/j.clon.2013.06.007.

    Article  CAS  Google Scholar 

  2. Avoidance of radiation injuries from medical interventional procedures. Ann ICRP. 2000; ICRP Publication No. 85(30):7-67.

  3. Kirkwood ML, Arbique GM, Guild JB, Timaran C, Valentine RJ, Anderson JA. Radiation-induced skin injury after complex endovascular procedures. J Vasc Surg. 2014;60(3):742–8. doi:10.1016/j.jvs.2014.03.236.

    Article  PubMed  Google Scholar 

  4. •• Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111(9):1368–72. doi:10.1016/j.amjcard.2012.12.060. Roguin’s landmark case series suggests an irrefutable connection between physicians’ occupation radiation exposure and subsequent brain malignancy.

    Article  PubMed  Google Scholar 

  5. Haqqani OP, Agarwal PK, Halin NM, Iafrati MD. Defining the radiation “scatter cloud” in the interventional suite. J Vasc Surg. 2013;58(5):1339–45. doi:10.1016/j.jvs.2013.01.025.

    Article  PubMed  Google Scholar 

  6. Limacher MC, Douglas PS, Germano G, Laskey WK, Lindsay BD, McKetty MH, et al. ACC expert consensus document. Radiation safety in the practice of cardiology. American College of Cardiology. J Am Coll Cardiol. 1998;31(4):892–913.

    Article  CAS  PubMed  Google Scholar 

  7. Hong MS, Beck AW, Nelson PR. Emerging national trends in the management and outcomes of lower extremity peripheral arterial disease. Ann Vasc Surg. 2011;25(1):44–54. doi:10.1016/j.avsg.2010.08.006.

    Article  PubMed  Google Scholar 

  8. Bolus NE. NCRP report 160 and what it means for medical imaging and nuclear medicine. J Nucl Med Technol. 2013;41(4):255–60. doi:10.2967/jnmt.113.128728.

    Article  PubMed  Google Scholar 

  9. Bedetti G, Botto N, Andreassi MG, Traino C, Vano E, Picano E. Cumulative patient effective dose in cardiology. Br J Radiol. 2008;81(969):699–705. doi:10.1259/bjr/29507259.

    Article  CAS  PubMed  Google Scholar 

  10. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86. doi:10.1001/archinternmed.2009.427.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patel AP, Gallacher D, Dourado R, Lyons O, Smith A, Zayed H, et al. Occupational radiation exposure during endovascular aortic procedures. Eur J Vasc Endovasc Surg. 2013;46(4):424–30. doi:10.1016/j.ejvs.2013.05.023.

    Article  CAS  PubMed  Google Scholar 

  12. Panuccio G, Greenberg RK, Wunderle K, Mastracci TM, Eagleton MG, Davros W. Comparison of indirect radiation dose estimates with directly measured radiation dose for patients and operators during complex endovascular procedures. J Vasc Surg. 2011;53(4):885–94.e1. doi:10.1016/j.jvs.2010.10.106.

    Article  PubMed  Google Scholar 

  13. Attigah N, Oikonomou K, Hinz U, Knoch T, Demirel S, Verhoeven E, et al. Radiation exposure to eye lens and operator hands during endovascular procedures in hybrid operating rooms. J Vasc Surg. 2016;63(1):198–203. doi:10.1016/j.jvs.2015.08.051.

    Article  PubMed  Google Scholar 

  14. Albayati MA, Kelly S, Gallagher D, Dourado R, Patel AS, Saha P, et al. Editor’s choice—angulation of the C-arm during complex endovascular aortic procedures increases radiation exposure to the head. Eur J Vasc Endovasc Surg. 2015;49(4):396–402. doi:10.1016/j.ejvs.2014.12.032.

    Article  CAS  PubMed  Google Scholar 

  15. Almén A, Sandblom V, Båth M, Lundh C. Optimisation of occupational radiological protection in image-guided interventions: potential impact of dose rate measurements. J Radiol Prot. 2015;35(1):47–62. doi:10.1088/0952-4746/35/1/47.

    Article  PubMed  Google Scholar 

  16. •• Ingwersen M, Drabik A, Kulka U, Oestreicher U, Fricke S, Krankenberg H, et al. Physicians’ radiation exposure in the catheterization lab: does the type of procedure matter? JACC Cardiovasc Interv. 2013;6(10):1095–102. doi:10.1016/j.jcin.2013.05.012. Ingwersen provides the most comprehensive catalog of physician radiation exposure during endovascular procedures.

    Article  PubMed  Google Scholar 

  17. Heye S, Maleux G, Oyen RH, Claes K, Kuypers DR. Occupational radiation dose: percutaneous interventional procedures on hemodialysis arteriovenous fistulas and grafts. Radiology. 2012;264(1):278–84. doi:10.1148/radiol.12110978.

    Article  PubMed  Google Scholar 

  18. Ullery BW, Landau B, Wang GJ, Faifrman RM, Woo EY. Radiation dose to the interventionalist is directly affected by the operating position. Vascular. 2014;22(2):149–53. doi:10.1177/1708538113476452.

    Article  PubMed  Google Scholar 

  19. Kirkwood ML, Guild JB, Arbique GM, Anderson JA, Valentine RJ, Timaran C. Surgeon radiation dose during complex endovascular procedures. J Vasc Surg. 2015;62(2):457–63. doi:10.1016/j.jvs.2015.02.050.

    Article  PubMed  Google Scholar 

  20. Mohapatra A, Greenberg RK, Mastracci TM, Eagleton MJ, Thornsberry B. Radiation exposure to operating room personnel and patients during endovascular procedures. J Vasc Surg. 2013;58(3):702–9. doi:10.1016/j.jvs.2013.02.032.

    Article  PubMed  Google Scholar 

  21. Sailer AM, Schurink GW, Bol ME, de Haan MW, van Zwam WH, Wildberger JE, et al. Occupational radiation exposure during endovascular aortic repair. Cardiovasc Intervent Radiol. 2015;38(4):827–32. doi:10.1007/s00270-014-1025-8.

    Article  PubMed  Google Scholar 

  22. Kendrick DE, Miller CP, Moorehead PA, Kim AH, Baele HR, Wong VL, et al. Comparative occupational radiation exposure between fixed and mobile imaging systems. J Vasc Surg. 2016;63(1):190–7. doi:10.1016/j.jvs.2015.08.062.

    Article  PubMed  Google Scholar 

  23. Fossaceca R, Brambilla M, Guzzardi G, Cerini P, Renghi A, Valzano S, et al. The impact of radiological equipment on patient radiation exposure during endovascular aortic aneurysm repair. Eur Radiol. 2012;22(11):2424–31. doi:10.1007/s00330-012-2492-4.

    Article  PubMed  Google Scholar 

  24. Vidovich MI, Khan AA, Xie H, Shroff AR. Radiation safety and vascular access: attitudes among cardiologists worldwide. Cardiovasc Revasc Med. 2015;16(2):109–15. doi:10.1016/j.carrev.2015.01.005.

    Article  PubMed  Google Scholar 

  25. Code of Federal Regulations 10, 20.1201 Subpart C (1991).

  26. Howells P, Eaton R, Patel AS, Taylor P, Modarai B. Risk of radiation exposure during endovascular aortic repair. Eur J Vasc Endovasc Surg. 2012;43(4):393–7. doi:10.1016/j.ejvs.2011.12.031.

    Article  CAS  PubMed  Google Scholar 

  27. Bannazadeh M, Altinel O, Kashyap VS, Sun Z, Clair D, Sarac TP. Patterns of procedure-specific radiation exposure in the endovascular era: impetus for further innovation. J Vasc Surg. 2009;49(6):1520–4. doi:10.1016/j.jvs.2009.02.015.

    Article  PubMed  Google Scholar 

  28. Majewska N, Stanisić MG, Kłos MA, Makałowski M, Frankiewicz M, Juszkat R, et al. Patients’ radiation doses during thoracic stent-graft implantation: the problem of long-lasting procedures. Ann Thorac Surg. 2012;93(2):465–72. doi:10.1016/j.athoracsur.2011.09.062.

    Article  PubMed  Google Scholar 

  29. Kalef-Ezra JA, Karavasilis S, Ziogas D, Dristiliaris D, Michalis LK, Matsagas M. Radiation burden of patients undergoing endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2009;49(2):283–7. doi:10.1016/j.jvs.2008.09.003. discussion 7.

    Article  PubMed  Google Scholar 

  30. Ho P, Cheng SW, Wu PM, Ting AC, Poon JT, Cheng CK, et al. Ionizing radiation absorption of vascular surgeons during endovascular procedures. J Vasc Surg. 2007;46(3):455–9. doi:10.1016/j.jvs.2007.04.034.

    Article  PubMed  Google Scholar 

  31. Monastiriotis S, Comito M, Labropoulos N. Radiation exposure in endovascular repair of abdominal and thoracic aortic aneurysms. J Vasc Surg. 2015;62(3):753–61. doi:10.1016/j.jvs.2015.05.033.

    Article  PubMed  Google Scholar 

  32. Jones C, Badger SA, Boyd CS, Soong CV. The impact of radiation dose exposure during endovascular aneurysm repair on patient safety. J Vasc Surg. 2010;52(2):298–302. doi:10.1016/j.jvs.2010.03.004.

    Article  PubMed  Google Scholar 

  33. Maurel B, Sobocinski J, Perini P, Guillou M, Midulla M, Azzaoui R, et al. Evaluation of radiation during EVAR performed on a mobile C-arm. Eur J Vasc Endovasc Surg. 2012;43(1):16–21. doi:10.1016/j.ejvs.2011.09.017.

    Article  CAS  PubMed  Google Scholar 

  34. Segal E, Weinberg I, Leichter I, Klimov A, Giri J, Bloom AI. Patient radiation exposure during percutaneous endovascular revascularization of the lower extremity. J Vasc Surg. 2013;58(6):1556–62. doi:10.1016/j.jvs.2013.06.016.

    Article  PubMed  Google Scholar 

  35. Thornton RH, Dauer LT, Altamirano JP, Alvarado KJ, St Germain J, Solomon SB. Comparing strategies for operator eye protection in the interventional radiology suite. J Vasc Interv Radiol. 2010;21(11):1703–7. doi:10.1016/j.jvir.2010.07.019.

    Article  PubMed  Google Scholar 

  36. Sigterman TA, Bolt LJ, Snoeijs MG, Krasznai AG, Heijboer R, Schurink GW, et al. Radiation exposure during percutaneous transluminal angioplasty for symptomatic peripheral arterial disease. Ann Vasc Surg. 2016;33:167–72. doi:10.1016/j.avsg.2015.11.019.

    Article  PubMed  Google Scholar 

  37. Chambers CE, Fetterly KA, Holzer R, Lin PJ, Blankenship JC, Balter S, et al. Radiation safety program for the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2011;77(4):546–56. doi:10.1002/ccd.22867.

    Article  PubMed  Google Scholar 

  38. • Power S, Mirza M, Thakorlal A, Ganai B, Gavagan LD, Given MF, et al. Efficacy of a radiation absorbing shield in reducing dose to the interventionalist during peripheral endovascular procedures: a single centre pilot study. Cardiovasc Intervent Radiol. 2015;38(3):573–8. doi:10.1007/s00270-014-0997-8. Power demonstrates the efficacy of the RADPAD device in reducing physician radiation exposure.

    Article  CAS  PubMed  Google Scholar 

  39. • Uthoff H, Quesada R, Roberts JS, Baumann F, Schernthaner M, Zaremski L, et al. Radioprotective lightweight caps in the interventional cardiology setting: a randomised controlled trial (PROTECT). EuroIntervention. 2015;11(1):53–9. doi:10.4244/EIJV11I1A9. Uthoff’s trial demonstrates the efficacy of a barium sulfate-bismuth oxide cap in reducing physician’s head exposure to radiation.

    Article  PubMed  Google Scholar 

  40. Reeves RR, Ang L, Bahadorani J, Naghi J, Dominguez A, Palakodeti V, et al. Invasive cardiologists are exposed to greater left sided cranial radiation: the BRAIN study (brain radiation exposure and attenuation during invasive cardiology procedures). JACC Cardiovasc Interv. 2015;8(9):1197–206. doi:10.1016/j.jcin.2015.03.027.

    Article  PubMed  Google Scholar 

  41. van den Haak RF, Hamans BC, Zuurmond K, Verhoeven BA, Koning OH. Significant radiation dose reduction in the hybrid operating room using a novel X-ray imaging technology. Eur J Vasc Endovasc Surg. 2015;50(4):480–6. doi:10.1016/j.ejvs.2015.06.025.

    Article  PubMed  Google Scholar 

  42. • Racadio J, Nachabe R, Carelsen B, Hilvert N, Johnson N, Kukreja K, et al. Effect of real-time radiation dose feedback on pediatric interventional radiology staff radiation exposure. J Vasc Interv Radiol. 2014;25(1):119–26. doi:10.1016/j.jvir.2013.08.015. Racadio reports the efficacy of real-time physician dose feedback on reducing radiation use.

    Article  PubMed  Google Scholar 

  43. • Savage C, Seale IV TM, Shaw CJ, Bruner AP, Marichal D, Rees CR. Evaluation of a suspended personal radiation protection system vs. conventional apron and shields in clinical interventional procedures. Open J Radiol. 2013;3:143–51. Savage reports the efficacy of the Zero-Gravity system, heavy shielding mounted from above, on reducing physician radiation exposure.

    Article  Google Scholar 

  44. •• Mahmud E, Schmid F, Kalmar P, Deutschmann H, Hafner F, Rief P, et al. Feasibility and safety of robotic peripheral vascular interventions: results of the RAPID trial. JACC Cardiovasc Interv. 2016;9(19):2058–64. doi:10.1016/j.jcin.2016.07.002. Mahmud debuts the CorPath 200 robotic angioplasty system, which virtually eliminates physician radiation exposure.

    Article  PubMed  Google Scholar 

  45. Stansfield T, Parker R, Masson N, Lewis D. The endovascular preprocedural run through and brief: a simple intervention to reduce radiation dose and contrast load in endovascular aneurysm repair. Vasc Endovasc Surg. 2016;50(4):241–6. doi:10.1177/1538574416644527.

    Article  Google Scholar 

  46. Kirkwood ML, Arbique GM, Guild JB, Timaran C, Chung J, Anderson JA, et al. Surgeon education decreases radiation dose in complex endovascular procedures and improves patient safety. J Vasc Surg. 2013;58(3):715–21. doi:10.1016/j.jvs.2013.04.004.

    Article  PubMed  Google Scholar 

  47. •• Agarwal S, Parashar A, Ellis SG, Heupler FA, Lau E, Tuzcu EM, et al. Measures to reduce radiation in a modern cardiac catheterization laboratory. Circ Cardiovasc Interv. 2014;7(4):447–55. doi:10.1161/CIRCINTERVENTIONS.114.001499. Agarwal reports on reducing patient radiation exposure by adoption of a series of dose-reduction imaging techniques.

    Article  PubMed  Google Scholar 

  48. Peach G, Sinha S, Black SA, Morgan RA, Loftus IM, Thompson MM, et al. Operator-controlled imaging significantly reduces radiation exposure during EVAR. Eur J Vasc Endovasc Surg. 2012;44(4):395–8. doi:10.1016/j.ejvs.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  49. Pitton MB, Kloeckner R, Schneider J, Ruckes C, Bersch A, Düber C. Radiation exposure in vascular angiographic procedures. J Vasc Interv Radiol. 2012;23(11):1487–95. doi:10.1016/j.jvir.2012.05.048.

    Article  PubMed  Google Scholar 

  50. Kirkwood ML, Guild JB, Arbique GM, Tsai S, Modrall JG, Anderson JA, et al. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures. J Vasc Surg. 2016. doi:10.1016/j.jvs.2016.04.062.

    Google Scholar 

  51. Ephrem G, Lau JF, Meraj PM. The fluoro-less and contrast-less peripheral endovascular intervention: a concept for the future today. Cardiovasc Revasc Med. 2015;16(5):294–8. doi:10.1016/j.carrev.2015.05.004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert D. Aronow MD, MPH.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Vascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldsweig, A.M., Abbott, J.D. & Aronow, H.D. Physician and Patient Radiation Exposure During Endovascular Procedures. Curr Treat Options Cardio Med 19, 10 (2017). https://doi.org/10.1007/s11936-017-0507-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0507-9

Keywords

Navigation