Skip to main content

Advertisement

Log in

Managing Cardiotoxicity of Chemotherapy

  • Heart Failure (J Fang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The increase in survivorship of cancer patients makes the understanding of the available options for prevention and treatment of cardiotoxicity induced by antineoplastic agents a crucial topic both for cardiologists and oncologists. The most frequent and typical clinical manifestation of cardiotoxicity is asymptomatic or symptomatic left ventricular dysfunction, which may progress to overt heart failure. It may be induced not only by conventional cancer therapy, like anthracyclines, but also by new antitumoral targeted therapy such as trastuzumab. The current standard for monitoring cardiac damage during antineoplastic treatment, mainly based on the quantification of left ventricular ejection fraction, detects cardiac toxicity only when a functional impairment has already occurred. Evaluation of cardiac biomarkers such as troponin, however, has shown excellent sensitivity in the early detection of cardiotoxicity by the identification of patients with subclinical cardiac injury that precedes the development of cardiac dysfunction. The use of angiotensin-converting enzyme inhibitors in patients with troponin elevation during chemotherapy may be an effective tool to prevent left ventricular ejection fraction reduction and late cardiac events. There are no well established recommendations for treatment of cancer patients who develop cardiac dysfunction. Angiotensin-converting enzyme inhibitors and beta-blockers have proven to be effective in this setting. However, there are concerns in using these medications in cancer patients, and therefore the tendency is to treat patients only if symptomatic. However, the clinical benefit of these medications may be more evident in asymptomatic patients, and the recovery of cardiac function strongly depends on the amount of time elapsed from the end of chemotherapy to the start of heart failure therapy. This observation suggests that the early detection of cardiac damage is crucial and early use of angiotensin-converting enzyme inhibitors and beta-blockers should be considered in patients with left ventricular dysfunction induced by antineoplastic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.

    Article  PubMed  CAS  Google Scholar 

  2. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34(15):1102–11. A complete overview of pathogenesis, diagnosis and management of cardiovascular complications of both old and novel cancer drugs

  3. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  PubMed  CAS  Google Scholar 

  4. Bonow RO, Bennett S, Casey Jr DE, et al. ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures): endorsed by the Heart Failure Society of America. Circulation. 2005;112:1853–87.

    Article  PubMed  Google Scholar 

  5. Wouters KA, Kremer LC, Miller TL, et al. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131(5):561–78.

    Article  PubMed  CAS  Google Scholar 

  6. Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22(5):820–8.

    Article  PubMed  CAS  Google Scholar 

  7. Yoon GJ, Telli ML, Kao DP, et al. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol. 2010;56(20):1644–50. A very interesting insight into how cancer therapy-associated decreased left ventricular ejection fraction is managed in the real life, out of clinical trials.

    Article  PubMed  Google Scholar 

  8. Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84.

    Article  PubMed  CAS  Google Scholar 

  9. Adams Jr KF, Dunlap SH, Sueta CA, et al. Relation between gender, etiology and survival in patients with symptomatic heart failure. J Am Coll Cardiol. 1996;28(7):1781–8.

    Article  PubMed  Google Scholar 

  10. Force T, Kolaja KL. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov. 2011;10:111–26.

    Article  PubMed  CAS  Google Scholar 

  11. Moja L, Tagliabue L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;4, CD006243.

    PubMed  Google Scholar 

  12. Bowles EJ, Wellman R, Feigelson HS, et al. Pharmacovigilance Study Team. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104(17):1293–305.

    Article  PubMed  CAS  Google Scholar 

  13. Chen J, Long JB, Hurria A, et al. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60(24):2504–12 [Epub 2012 Nov 14].

    Article  PubMed  CAS  Google Scholar 

  14. Khouri MG, Douglas PS, Mackey JR, et al. Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation. 2012;126(23):2749–63. A comprehensive review about crucial topics in Cardio-Oncology research such as the definition, incidence, detection, management and clinical importance of cardiac toxicity in early breast cancer.

    Article  PubMed  Google Scholar 

  15. Jones RL, Ewer MS. Cardiac and cardiovascular toxicity of nonanthracycline anticancer drugs. Expert Rev Anticancer Ther. 2006;6(9):1249–69.

    Article  PubMed  CAS  Google Scholar 

  16. Suter TM, Ewer MS. Trastuzumab-associated cardiotoxicity. In: Ewer MS, Yeh ETH, editors. Cancer and the Heart. Hamilton, ON: BC Decker Inc; 2006. p. 67–4.

    Google Scholar 

  17. Jones AL, Barlow M, Barrett-Lee PJ, et al. Management of cardiac health in trastuzumab-treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring. Br J Cancer. 2009;100(5):684–92.

    Article  PubMed  CAS  Google Scholar 

  18. Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.

    Article  PubMed  CAS  Google Scholar 

  19. Telli ML, Hunt SA, Carlson RW, et al. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25:3525–33.

    Article  PubMed  CAS  Google Scholar 

  20. Steinherz LJ, Graham T, Hurwitz R, et al. Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Children’s Cancer Study Group. Pediatrics. 1992;89(5 Pt 1):942–9.

    PubMed  CAS  Google Scholar 

  21. Lipshultz SE, Sanders SP, Goorin AM, et al. Monitoring for anthracycline cardiotoxicity. Pediatrics. 1994;93(3):433–7.

    PubMed  CAS  Google Scholar 

  22. Ritchie JL, Bateman TM, Bonow RO, et al. Guidelines for clinical use of cardiac radionuclide imaging. Report of the American College of Cardiology/American Heart Association Task Force on assessment of diagnostic and therapeutic cardiovascular procedures, in collaboration with the American Society of Nuclear Cardiology. J Am Coll Cardiol. 1995;25:521–47.

    Article  PubMed  CAS  Google Scholar 

  23. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents. Incidence, treatment, and prevention. Drug Saf. 2000;22(4):263–302.

    Article  PubMed  CAS  Google Scholar 

  24. Meinardi MT, van der Graaf WT, van Veldhuisen DJ, et al. Detection of anthracycline-induced cardiotoxicity. Cancer Treat Rev. 1999;25(4):237–47.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz RG, McKenzie WB, Alexander J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven–year experience using serial radionuclide angiocardiography. Am J Med. 1987;82(6):1109–18.

    Article  PubMed  CAS  Google Scholar 

  26. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.

    Article  PubMed  CAS  Google Scholar 

  27. Geisberg CA, Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep. 2010;12:404–10.

    Article  PubMed  CAS  Google Scholar 

  28. Sawaya H, Plana JC, Scherrer-Crosbie M. Newest echocardiographic techniques for the detection of cardiotoxicity and heart failure during chemotherapy. Heart Fail Clin. 2011;7(3):313–21. This study offers an excellent evaluation of the role of modern echocardiography in the diagnosis of cardiotoxicity.

    Article  PubMed  Google Scholar 

  29. Oreto L, Todaro MC, Umland MM, et al. Use of echocardiography to evaluate the cardiac effects of therapies used in cancer treatment: what do we know? J Am Soc Echocardiogr. 2012;25(11):1141–52.

    Article  PubMed  Google Scholar 

  30. Hundley WG, Bluemke DA, Finn JP, et al. American College of Cardiology Foundation Task Force on Expert Consensus Documents, ACCF/ACR/AHA/ NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55:2614–62.

    Article  PubMed  Google Scholar 

  31. Fallah-Rad N, Lytwyn M, Fang T, et al. Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson. 2008;10:5.

    Article  PubMed  Google Scholar 

  32. Walker J, Bhullar N, Fallah-Rad N, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28:3429–36.

    Article  PubMed  Google Scholar 

  33. Armstrong GT, Plana JC, Zhang N, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84.

    Article  PubMed  Google Scholar 

  34. O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 2008;245(3):206–18.

    Article  PubMed  Google Scholar 

  35. Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997;96:2641–8.

    Article  PubMed  CAS  Google Scholar 

  36. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36:517–22.

    Article  PubMed  CAS  Google Scholar 

  37. Auner HW, Tinchon C, Linkesch W, et al. Prolonged monitoring of troponin T for detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82:218–22.

    PubMed  CAS  Google Scholar 

  38. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:145–53.

    Article  PubMed  CAS  Google Scholar 

  39. Cardinale D, Sandri MT, Martinoni A, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13:710–5.

    Article  PubMed  CAS  Google Scholar 

  40. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of Troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54.

    Article  PubMed  CAS  Google Scholar 

  41. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  PubMed  CAS  Google Scholar 

  42. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of Troponin I evaluation. J Clin Oncol. 2010;28:3910–6.

    Article  PubMed  CAS  Google Scholar 

  43. Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukemia: long-term follow-up of a prospective, randomized, multicenter trial. Lancet Oncol. 2010;11(10):950–61.

    Article  PubMed  CAS  Google Scholar 

  44. Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–9.

    Article  PubMed  CAS  Google Scholar 

  45. Newby LK, Jesse RL, Babb JD, et al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2012;60(23):2427–63.

    Article  PubMed  Google Scholar 

  46. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19(5):1444–54.

    PubMed  CAS  Google Scholar 

  47. Muggia FM, Hainsworth JD, Jeffers S, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol. 1997;15(3):987–93.

    PubMed  CAS  Google Scholar 

  48. Sieswerda E, Kremer LC, Caron HN, et al. The use of liposomal anthracycline analogues for childhood malignancies: a systematic review. Eur J Cancer. 2011;47(13):2000–8.

    Article  PubMed  CAS  Google Scholar 

  49. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  50. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    Article  Google Scholar 

  51. Nysom K, Holm K, Lipsitz SR, et al. Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16(2):545–50.

    PubMed  CAS  Google Scholar 

  52. van Dalen EC, van der Pal HJH, Caron HN, Kremer LCM. Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2009;(4):CD005008.

  53. Scott JM, Khakoo A, Mackey JR, et al. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 2011;124:642–50.

    Article  PubMed  Google Scholar 

  54. Jones L, Dolinsky VW, Haykowsky MJ, et al. Effects of aerobic training to improve cardiovascular function and prevent cardiac remodeling after cytotoxic therapy in early breast cancer. Poster presented at: 102nd Annual meeting of the American Association of Cancer Research; April 2011. Orlando, FL.

  55. van Dalen EC, Caron HN, Dickinson HO, et al. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;(6):CD003917.

  56. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin- treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  PubMed  CAS  Google Scholar 

  57. Huh WW, Jaffe N, Durand JB, et al. Comparison of doxorubicin cardiotoxicity in pediatric sarcoma patients when given with dexrazoxane vs as continuous infusion. Pediatr Hematol Oncol. 2010;27(7):546–57.

    Article  PubMed  CAS  Google Scholar 

  58. Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25(5):493–500.

    Article  PubMed  CAS  Google Scholar 

  59. Barry EV, Vrooman LM, Dahlberg SE, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 2008;26(7):1106–11.

    Article  PubMed  CAS  Google Scholar 

  60. Dulin B, Abraham WT. Pharmacology of carvedilol. Am J Cardiol. 2004;6:3–6.

    Article  Google Scholar 

  61. Cheng J, Kamiya K, Kodama I. Carvedilol: molecular and cellular basis for its multifaceted therapeutic potential. Cardiovasc Drug Rev. 2001;19:152–71.

    Article  PubMed  CAS  Google Scholar 

  62. Matsui H, Morishima I, Numaguchi Y, et al. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci. 1999;65:1265–74.

    Article  PubMed  CAS  Google Scholar 

  63. Santos DL, Moreno AJ, Leino RL, et al. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185:218–27.

    Article  PubMed  CAS  Google Scholar 

  64. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37(4):837–46.

    Article  PubMed  CAS  Google Scholar 

  65. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  PubMed  CAS  Google Scholar 

  66. El-Shitany NA, Tolba OA, El-Shanshory MR, et al. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–13.

    Article  PubMed  CAS  Google Scholar 

  67. Takizawa T, Arai M, Tomaru K, et al. Carvedilol effectively blocks oxidative stress–mediated downregulation of sarcoplasmic reticulum Ca2_-ATPase2 gene transcription through modification of Sp1 binding. Biochem Biophys Res Commun. 2005;328:116–24.

    Article  PubMed  Google Scholar 

  68. Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of Beta-Adrenoceptor blockade in breast cancer patients undergoing chemotherapy: a follow-up study of heart failure. Circ Heart Fail. 2013. doi:10.1161/CIRCHEARTFAILURE.112.000055.

  69. Kaya MG, Ozkan M, Gunebakmaz O, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.06.023.

  70. Nakamae H, Tsumura K, Terada Y, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104(11):2492–8.

    Article  PubMed  CAS  Google Scholar 

  71. Cadeddu C, Piras A, Mantovani G, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160(3):487.e1–7.

    Article  Google Scholar 

  72. Dessì M, Piras A, Madeddu C, et al. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and myocardial dysfunction. Exp Ther Med. 2011;2(5):1003–9 [Epub 2011 Jun 30].

    PubMed  Google Scholar 

  73. Schupp N, Schmid U, Heidland A, et al. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 2008;199:278–87.

    Article  PubMed  CAS  Google Scholar 

  74. Riad A, Bien S, Westermann D, et al. Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res. 2009;69:695–9.

    Article  PubMed  CAS  Google Scholar 

  75. Acar Z, Kale A, Turgut M, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58:988–9.

    Article  PubMed  Google Scholar 

  76. Seicean S, Seicean A, Plana JC, et al. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90.

    Article  PubMed  CAS  Google Scholar 

  77. Barry E, Alvarez JA, Scully RE, et al. Anthracycline induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8(8):1039–58.

    Article  PubMed  CAS  Google Scholar 

  78. Pituskin E, Haykowsky M, Mackey JR, et al. Rationale and design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101-Breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI. BMC Cancer. 2011;11:318.

    Article  PubMed  Google Scholar 

  79. Bosch X, Esteve J, Sitges M, et al. Prevention of chemotherapy-induced left ventricular dysfunction with enalapril and carvedilol: rationale and design of the OVERCOME trial. J Card Fail. 2011;17:643–8.

    Article  PubMed  Google Scholar 

  80. Hunt SA, Abraham WT, Chin MH, et al. American College of Cardiology Foundation; American Heart Association: 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults; a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–90.

    Article  PubMed  Google Scholar 

  81. Lee AP, Ice R, Blessey R, et al. Long-term effects of physical training on coronary patients with impaired ventricular function. Circulation. 1979;60(7):1519–26.

    Article  PubMed  CAS  Google Scholar 

  82. van Tol BA, Huijsmans RJ, Kroon DW, et al. Effects of exercise training on cardiac performance, exercise capacity, and quality of life in patients with heart failure: a meta-analysis. Eur J Heart Fail. 2006;8(8):841–50.

    Article  PubMed  Google Scholar 

  83. Hughes DC, Lenihan DJ, Harrison CA, et al. Exercise intervention for cancer survivors with heart failure: two case reports. J Exerc Sci Fit. 2011;9(1):65–73.

    Article  PubMed  Google Scholar 

  84. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy. Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    Article  PubMed  CAS  Google Scholar 

  85. Rickard J, Kumbhani DJ, Baranowski B, et al. Usefulness of cardiac resynchronization therapy in patients with Adriamycin-induced cardiomyopathy. Am J Cardiol. 2010;105(4):522–6.

    Article  PubMed  CAS  Google Scholar 

  86. Oliveira GH, Hardaway BW, Kucheryavaya AY, et al. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant. 2012;31(8):805–10.

    Article  PubMed  Google Scholar 

  87. Lenneman AJ, Wang L, Wigger M, et al. Heart transplant survival outcomes for adriamycin-dilated cardiomyopathy. Am J Cardiol. 2013;111(4):609–12.

    Article  PubMed  Google Scholar 

  88. Huang C, Zhang X, Ramil JM, et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121(5):675–83.

    Article  PubMed  CAS  Google Scholar 

  89. De Angelis A, Piegari E, Cappetta D, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121(2):276–92. This study offers new insights into the therapeutic approach of cardiotoxicity, suggesting that strategies that preserve or restore progenitor cell populations may have a role in the prevention or management of heart failure caused by doxorubicin.

    Article  PubMed  Google Scholar 

  90. Geisberg C, Pentassuglia L, Sawyer DB. Cardiac side effects of anticancer treatments: new mechanistic insights. Curr Heart Fail Rep. 2012;9(3):211–8.

    Article  PubMed  CAS  Google Scholar 

  91. Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.

    Article  PubMed  CAS  Google Scholar 

  92. Romond EH, Jeong JH, Rastogi P, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor Receptor 2-Positive breast cancer. J Clin Oncol. 2012;30(31):3792–9.

    Article  PubMed  CAS  Google Scholar 

  93. Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res. 2008;14(1):14–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Dr. Alessandro Colombo reported no potential conflicts of interest relevant to this article.

Dr. Carlo A. Meroni reported no potential conflicts of interest relevant to this article.

Dr. Carlo M. Cipolla reported no potential conflicts of interest relevant to this article.

Dr. Daniela Cardinale reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Colombo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, A., Meroni, C.A., Cipolla, C.M. et al. Managing Cardiotoxicity of Chemotherapy. Curr Treat Options Cardio Med 15, 410–424 (2013). https://doi.org/10.1007/s11936-013-0248-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-013-0248-3

Keywords

Navigation