Skip to main content

Advertisement

Log in

Slowing the progression of aortic stenosis

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Aortic stenosis (AS) is the most frequent valvular heart disease in the Western world. The only definitive treatment for this disorder is surgical replacement of the aortic valve. Recent histopathologic studies have provided important insights into the pathogenesis of calcific AS. These results suggest that this disease develops as the result of an active disease process at the cellular and molecular levels that shares many similarities with vascular atherosclerosis, ranging from endothelial dysfunction to, ultimately, calcification. In this review, we discuss the cellular and molecular mechanisms, natural history, diagnosis, and therapeutic options, including the potential for medical therapies, for the treatment of AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rajamannan NM, Bonow RO, Rahimtoola SH: Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med 2007, 4:254–262.

    Article  PubMed  CAS  Google Scholar 

  2. Lindroos M, Kupari M, Heikkila J, Tilvis R: Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 1993, 21:1220–1225.

    PubMed  CAS  Google Scholar 

  3. Roberts WC, Ko JM: Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 2005, 111:920–925.

    Article  PubMed  Google Scholar 

  4. Ross J Jr, Braunwald E: Aortic stenosis. Circulation 1968, 38:61–67.

    PubMed  Google Scholar 

  5. Horstkotte D, Loogen F: The natural history of aortic valve stenosis. Eur Heart J 1988, 9(Suppl E):57–64.

    PubMed  Google Scholar 

  6. Pellikka PA, Nishimura RA, Bailey KR, Tajik AJ: The natural history of adults with asymptomatic, hemodynamically significant aortic stenosis. J Am Coll Cardiol 1990, 15:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  7. Stewart BF, Siscovick D, Lind BK, et al.: Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol 1997, 29:630–634.

    Article  PubMed  CAS  Google Scholar 

  8. Galante A, Pietroiusti A, Vellini M, et al.: C-reactive protein is increased in patients with degenerative aortic valvular stenosis. J Am Coll Cardiol 2001, 38:1078–1082.

    Article  PubMed  CAS  Google Scholar 

  9. Palta S, Pai AM, Gill KS, Pai RG: New insights into the progression of aortic stenosis: implications for secondary prevention. Circulation 2000, 101:2497–2502.

    PubMed  CAS  Google Scholar 

  10. Rajamannan NM, Edwards WD, Spelsberg TC: Hypercholesterolemic aortic-valve disease. N Engl J Med 2003, 349:717–718.

    Article  PubMed  Google Scholar 

  11. Rajamannan NM, Sangiorgi G, Springett M, et al.: Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis 2001, 10:371–374.

    PubMed  CAS  Google Scholar 

  12. Drolet MC, Arsenault M, Couet J: Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol 2003, 41:1211–1217.

    Article  PubMed  Google Scholar 

  13. Rajamannan NM, Subramaniam M, Stock SR, et al.: Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation 2005, 111:3296–3301.

    Article  PubMed  CAS  Google Scholar 

  14. Wallby L, Janerot-Sjoberg B, Steffensen T, Broqvist M: T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves. Heart 2002, 88:348–351.

    Article  PubMed  CAS  Google Scholar 

  15. Freeman RV, Otto CM: Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 2005, 111:3316–3326.

    Article  PubMed  Google Scholar 

  16. Olsson M, Thyberg J, Nilsson J: Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol 1999, 19:1218–1222.

    PubMed  CAS  Google Scholar 

  17. Otto CM, Kuusisto J, Reichenbach DD, et al.: Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 1994, 90:844–853.

    PubMed  CAS  Google Scholar 

  18. Olsson M, Dalsgaard CJ, Haegerstrand A, et al.: Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol 1994, 23:1162–1170.

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien KD, Kuusisto J, Reichenbach DD, et al.: Osteopontin is expressed in human aortic valvular lesions. Circulation 1995, 92:2163–2168.

    PubMed  CAS  Google Scholar 

  20. Mohler ER 3rd, Adam LP, McClelland P, et al.: Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol 1997, 17:547–552.

    PubMed  Google Scholar 

  21. Rajamannan NM, Subramaniam M, Rickard D, et al.: Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003, 107:2181–2184.

    Article  PubMed  Google Scholar 

  22. Mohler ER 3rd, Gannon F, Reynolds C, et al.: Bone formation and inflammation in cardiac valves. Circulation 2001, 103:1522–1528.

    PubMed  Google Scholar 

  23. Kaden JJ, Bickelhaupt S, Grobholz R, et al.: Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis 2004, 13:560–566.

    PubMed  Google Scholar 

  24. O’Brien KD, Shavelle DM, Caulfield MT, et al.: Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 2002, 106:2224–2230.

    Article  PubMed  CAS  Google Scholar 

  25. Helske S, Lindstedt KA, Laine M, et al.: Induction of local angiotensin II-producing systems in stenotic aortic valves. J Am Coll Cardiol 2004, 44:1859–1866.

    Article  PubMed  CAS  Google Scholar 

  26. Kaden JJ, Dempfle CE, Grobholz R, et al.: Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 2003, 170:205–211.

    Article  PubMed  CAS  Google Scholar 

  27. Jian B, Narula N, Li QY, et al.: Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg 2003, 75:457–465.

    Article  PubMed  Google Scholar 

  28. Ghaisas NK, Foley JB, O’Briain DS, et al.: Adhesion molecules in nonrheumatic aortic valve disease: endothelial expression, serum levels and effects of valve replacement. J Am Coll Cardiol 2000, 36:2257–2262.

    Article  PubMed  CAS  Google Scholar 

  29. Jian B, Jones PL, Li Q, et al.: Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol 2001, 159:321–327.

    PubMed  CAS  Google Scholar 

  30. Rajamannan NM, Subramaniam M, Springett M, et al.: Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 2002, 105:2260–2265.

    Article  CAS  Google Scholar 

  31. Rajamannan NM, Subramaniam M, Rickard D, et al.: Human aortic valve calcification is associated with an osteoblast phenotype [see comment]. Circulation 2003, 107:2181–2184.

    Article  PubMed  Google Scholar 

  32. Rajamannan NM, Subramaniam M, Caira F, et al.: Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 2005, 112:I229–I234.

    PubMed  Google Scholar 

  33. Shao JS, Cheng SL, Pingsterhaus JM, et al.: Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 2005, 115:1210–1220.

    Article  PubMed  CAS  Google Scholar 

  34. Garg V, Muth AN, Ransom JF, et al.: Mutations in NOTCH1 cause aortic valve disease. Nature 2005, 437:270–274.

    Article  PubMed  CAS  Google Scholar 

  35. Probst V, Le Scouarnec S, Legendre A, et al.: Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation 2006, 113:856–860.

    Article  PubMed  Google Scholar 

  36. Novaro GM, Sachar R, Pearce GL, et al.: Association between apolipoprotein E alleles and calcific valvular heart disease. Circulation 2003, 108:1804–1808.

    Article  PubMed  CAS  Google Scholar 

  37. Ortlepp JR, Schmitz F, Mevissen V, et al.: The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis. Eur Heart J 2004, 25:514–522.

    Article  PubMed  CAS  Google Scholar 

  38. Ortlepp JR, Hoffmann R, Ohme F, et al.: The vitamin D receptor genotype predisposes to the development of calcific aortic valve stenosis. Heart 2001, 85:635–638.

    Article  PubMed  CAS  Google Scholar 

  39. Bonow RO, Carabello BA, Chatterjee K, et al.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease). J Am Coll Cardiol 2006; 48:e1–e148.

    Article  PubMed  Google Scholar 

  40. Munt B, Legget ME, Kraft CD, et al.: Physical examination in valvular aortic stenosis: correlation with stenosis severity and prediction of clinical outcome. Am Heart J 1999, 137:298–306.

    Article  PubMed  CAS  Google Scholar 

  41. Shavelle DM, Budoff MJ, Buljubasic N, et al.: Usefulness of aortic valve calcium scores by electron beam computed tomography as a marker for aortic stenosis. Am J Cardiol 2003, 92:349–353.

    Article  PubMed  CAS  Google Scholar 

  42. Messika-Zeitoun D, Aubry MC, Detaint D, et al.: Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation 2004, 110:356–362.

    Article  PubMed  Google Scholar 

  43. John AS, Dill T, Brandt RR, et al.: Magnetic resonance to assess the aortic valve area in aortic stenosis. How does it compare to current diagnostic standards? J Am Coll Cardiol 2003, 42:519–526.

    Article  PubMed  Google Scholar 

  44. Friedrich MG, Schulz-Menger J, Poetsch T, et al.: Quantification of valvular aortic stenosis by magnetic resonance imaging. Am Heart J 2002, 144:329–334.

    Article  PubMed  Google Scholar 

  45. Kilner PJ, Manzara CC, Mohiaddin RH, et al.: Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation 1993, 87:1239–1248.

    PubMed  CAS  Google Scholar 

  46. Edwards FH, Peterson ED, Coombs LP, et al.: Prediction of operative mortality after valve replacement surgery. J Am Coll Cardiol 2001, 37:885–892.

    Article  PubMed  CAS  Google Scholar 

  47. Ambler G, Omar RZ, Royston P, et al.: Generic, simple risk stratification model for heart valve surgery. Circulation 2005, 112:224–231.

    Article  PubMed  Google Scholar 

  48. Birkmeyer JD, Siewers AE, Finlayson EV, et al.: Hospital volume and surgical mortality in the United States. N Engl J Med 2002, 346:1128–1137.

    Article  PubMed  Google Scholar 

  49. Wilson W, Taubert KA, Gewitz M, et al.: Prevention of infective endocarditis. Guidelines from the American Heart Association. A guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007, 116:1736–1754.

    Article  PubMed  Google Scholar 

  50. Arishiro K, Hoshiga M, Negoro N, et al.: Angiotensin receptor-1 blocker inhibits atherosclerotic changes and endothelial disruption of the aortic valve in hypercholesterolemic rabbits. J Am Coll Cardiol 2007, 49:1482–1489.

    Article  PubMed  CAS  Google Scholar 

  51. Caulfield MT, Budoff MJ, Takasu J, et al.: Angiotensin converting enzyme inhibitor use is associated with a decreased rate of aortic valve calcium accumulation [abstract]. Circulation 2002, 106(Suppl II):II–640.

    Google Scholar 

  52. O’Brien KD, Probstfield JL, Caulfield MT, et al.: Angiotensin-converting enzyme inhibitors and change in aortic valve calcium. Arch Intern Med 2005, 165:858–862.

    Article  PubMed  CAS  Google Scholar 

  53. Rosenhek R, Rader F, Loho N, et al.: Statins but not ACE-inhibitors delay progression of aortic stenosis. Circulation 2004, 110:1291–1295.

    Article  PubMed  CAS  Google Scholar 

  54. Novaro GM, Tiong IY, Pearce GL, et al.: Effect of hydroxymethylglutaryl coenzyme A reductase inhibitors on the progression of calcific aortic stenosis. Circulation 2001, 104:2205–2209.

    Article  PubMed  CAS  Google Scholar 

  55. Bellamy MF, Pellikka PA, Klarich KW, et al.: Association of cholesterol levels, hydroxymethylglutaryl coenzyme-A reductase inhibitor treatment, and progression of aortic stenosis in the community. J Am Coll Cardiol 2002, 40:1723–1730.

    Article  PubMed  CAS  Google Scholar 

  56. Aronow WS, Ahn C, Kronzon I, Goldman ME: Association of coronary risk factors and use of statins with progression of mild valvular aortic stenosis in older persons. Am J Cardiol 2001, 88:693–695.

    Article  PubMed  CAS  Google Scholar 

  57. Cowell SJ, Newby DE, Prescott RJ, et al.: A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 2005, 352:2389–2397.

    Article  PubMed  CAS  Google Scholar 

  58. Moura LM, Ramos SF, Zamorano JL, et al.: Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J Am Coll Cardiol 2007, 49:554–561.

    Article  PubMed  CAS  Google Scholar 

  59. Rossebo A, Pedersen T, Skjaerpe T, et al.: Design of the Simvastatin and Ezetimide in Aortic Stenosis (SEAS) study. Atherosclerosis 2003, 170(Suppl 4–2):253.

    Google Scholar 

  60. Rossebo AB, Pedersen TR, Allen C, et al.: Design and baseline characteristics of the Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study. Am J Cardiol 2007, 99:970–973.

    Article  PubMed  CAS  Google Scholar 

  61. Antonini-Canterin F, Corrado G, Faggiano P, et al.: A medical therapy for aortic valve sclerosis and aortic valve stenosis? Rationale of the ASSIST study (Asymptomatic aortic Sclerosis/Stenosis: Influence of Statins): a large, observational, prospective, multicenter study of the Italian Society of Cardiovascular Echocardiography. J Cardiovasc Med (Hagerstown) 2006, 7:464–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Rajamannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maganti, K., Rajamannan, N. Slowing the progression of aortic stenosis. Curr Treat Options Cardio Med 10, 18–26 (2008). https://doi.org/10.1007/s11936-008-0003-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-008-0003-3

Keywords

Navigation