Skip to main content
Log in

Use of high-resolution spiral CT for the diagnosis of coronary artery disease

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Multislice CT coronary angiography (CTCA) is a rapidly emerging technique for the noninvasive visualization of coronary arteries. Over the past 5 years, several scanner generations have been introduced with a progressive improvement in the diagnostic accuracy in the detection of coronary artery stenosis in selected patient populations. The introduction of 64-slice technology, which allows high resolution and nearly motion-free coronary artery imaging, has resulted in further improvement in the diagnostic accuracy. This technique is on the verge of widespread clinical implementation, and even in the absence of large clinical trials, a high demand for CTCA is already observed all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Scanlon PJ, Faxon DP, Audet AM, et al.: ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 1999, 33:1756–1824.

    Article  PubMed  CAS  Google Scholar 

  2. Leschka S, Alkadhi H, Plass A, et al.: Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005, 26:1482–1487.

    Article  PubMed  Google Scholar 

  3. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA: Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005, 46:552–557.

    Article  PubMed  Google Scholar 

  4. Leber AW, Knez A, von Ziegler F, et al.: Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005, 46:147–154.

    Article  PubMed  Google Scholar 

  5. Mollet NR, Cademartiri F, van Mieghem CA, et al.: High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005, 112:2318–2323.

    Article  PubMed  Google Scholar 

  6. Ropers D, Rixe J, Anders K, et al.: Usefulness of multidetector row spiral computed tomography with 64-x 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 2006, 97:343–348.

    Article  PubMed  Google Scholar 

  7. Schuijf JD, Pundziute G, Jukema JW, et al.: Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 2006, 98:145–148.

    Article  PubMed  Google Scholar 

  8. Ong AT, van Domburg RT, Aoki J, et al.: Sirolimus-eluting stents remain superior to bare-metal stents at two years: medium-term results from the Rapamycin-Eluting Stent Evaluated at Rotterdam Cardiology Hospital (RESEARCH) registry. J Am Coll Cardiol 2006, 47:1356–1360.

    Article  PubMed  CAS  Google Scholar 

  9. Schuijf JD, Bax JJ, Jukema JW, et al.: Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 2004, 94:427–430.

    Article  PubMed  Google Scholar 

  10. Cademartiri F, Mollet N, Lemos PA, et al.: Usefulness of multislice computed tomographic coronary angiography to assess in-stent restenosis. Am J Cardiol 2005, 96:799–802.

    Article  PubMed  Google Scholar 

  11. Gilard M, Cornily JC, Pennec PY, et al.: Assessment of coronary artery stents by 16 slice computed tomography. Heart 2006, 92:58–61.

    Article  PubMed  CAS  Google Scholar 

  12. Kitagawa T, Fujii T, Tomohiro Y, et al.: Noninvasive assessment of coronary stents in patients by 16-slice computed tomography. Int J Cardiol 2006, 109:188–194.

    Article  PubMed  Google Scholar 

  13. Hong C, Chrysant GS, Woodard PK, Bae KT: Coronary artery stent patency assessed with in-stent contrast enhancement measured at multi-detector row CT angiography: initial experience. Radiology 2004, 233:286–291.

    Article  PubMed  Google Scholar 

  14. Ohnuki K, Yoshida S, Ohta M, et al.: New diagnostic technique in multi-slice computed tomography for in-stent restenosis: pixel count method. Int J Cardiol 2006, 108:251–258.

    Article  PubMed  Google Scholar 

  15. Gilard M, Cornily JC, Rioufol G, et al.: Noninvasive assessment of left main coronary stent patency with 16-slice computed tomography. Am J Cardiol 2005, 95:110–112.

    Article  PubMed  Google Scholar 

  16. Van Mieghem CA, Cademartiri F, Mollet NR, et al.: Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting. A comparison with conventional coronary angiography and intravascular ultrasound. Circulation 2006, 114:878–881.

    Article  Google Scholar 

  17. Nieman K, Pattynama PM, Rensing BJ, et al.: Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology 2003, 229:749–756.

    Article  PubMed  Google Scholar 

  18. Martuscelli E, Romagnoli A, D’Eliseo A, et al.: Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation 2004, 110:3234–3238.

    Article  PubMed  CAS  Google Scholar 

  19. Schlosser T, Konorza T, Hunold P, et al.: Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol 2004, 44:1224–1229.

    Article  PubMed  Google Scholar 

  20. Anders K, Baum U, Schmid M, et al.: Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 2006, 57:336–344.

    Article  PubMed  Google Scholar 

  21. Pache G, Saueressig U, Frydrychowicz A, et al.: Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J 2006, 27:976–980.

    Article  PubMed  Google Scholar 

  22. Malagutti P, Nieman K, Meijboom WB, et al.: Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J 2006, Jul 17; [Epub ahead of print].

  23. Hausleiter J, Meyer T, Hadamitzky M, et al.: Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 2006, 113:1305–1310.

    Article  PubMed  Google Scholar 

  24. Funabashi N, Yoshida K, Tadokoro H, et al.: Three dimensional segmented myocardial perfusion images by selective intracoronary injection of contrast using 256 slice cone beam computed tomography. Heart 2005, 91:1349–1351.

    Article  PubMed  CAS  Google Scholar 

  25. Mori S, Kondo C, Suzuki N, et al.: Volumetric cine imaging for cardiovascular circulation using prototype 256-detector row computed tomography scanner (4-dimensional computed tomography): a preliminary study with a procine model. J Comput Assist Tomogr 2005, 29:26–30.

    Article  PubMed  Google Scholar 

  26. Achenbach S, Ropers D, Kuettner A, et al.: Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 2006, 57:331–335.

    Article  PubMed  Google Scholar 

  27. Flohr TG, McCollough CH, Bruder H, et al.: First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006, 16:256–268.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim de Feyter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijboom, W.B., van Pelt, N. & de Feyter, P. Use of high-resolution spiral CT for the diagnosis of coronary artery disease. Curr Treat Options Cardio Med 9, 29–36 (2007). https://doi.org/10.1007/s11936-007-0048-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-007-0048-8

Keywords

Navigation