Skip to main content

Advertisement

Log in

Therapeutic angiogenesis for coronary artery disease

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Angiogenesis is a promising new therapy for the treatment of patients with coronary artery disease who are not candidates for standard revascularization techniques. The concept of therapeutic angiogenesis is based upon improving myocardial function by increasing blood flow to ischemic areas of the heart. Angiogenic growth factors, including fibroblast growth factor and vascular endothelial growth factor, have been shown to induce functionally significant angiogenesis in preclinical studies. Both protein and gene formulations are under investigation; currently, protein-based therapy is considered the more practical form of therapy. The delivery of these growth factors is another aspect of angiogenic therapy under development, with several techniques used in clinical trials. However, the optimal method of delivery with regard to tissue specificity and duration of exposure is not yet defined. Despite encouraging preclinical data, the results of clinical trials so far have shown only, if any, modest improvements in cardiac function and clinical outcome. Further randomized, double-blind, placebo-controlled trials are necessary to support angiogenesis as a therapy for ischemic cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Tavazzi L: Clinical epidemiology of acute myocardial infarction. Am Heart J 1999, 138:S48–54.

    Article  PubMed  CAS  Google Scholar 

  2. Eagle KA, Guyton RA, Davidoff R, et al.: ACC/AHA guidelines for coronary artery bypass graft surgery: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1991 Guidelines for Coronary Artery Bypass Graft Surgery). American College of Cardiology/American Heart Association. J Am Coll Cardiol 1999, 34:1262–1347.

    Article  PubMed  CAS  Google Scholar 

  3. Jones EL, Craver JM, Guyton RA, et al.: Importance of complete revascularization in performance of the coronary bypass operation. Am J Cardiol 1983, 51:7–12.

    Article  PubMed  CAS  Google Scholar 

  4. Sellke FW, Laham RJ, Edelman ER, et al.: Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg 1998, 65:1540–1544.

    Article  PubMed  CAS  Google Scholar 

  5. Schaper W, Ito WD: Molecular mechanisms of coronary collateral vessel growth. Circ Res 1996, 79:911–919.

    PubMed  CAS  Google Scholar 

  6. Folkman J: Angiogenic therapy of the human heart. Circulation 1998, 97:628–629.

    PubMed  CAS  Google Scholar 

  7. Laham R, Simons M: Growth factor therapy in ischemic heart disease. In Angiogenesis in Health and Disease. Edited by Rubanyi G. New York: Marcel Decker; 2000:451–475.

    Google Scholar 

  8. Ware JA, Simons M: Angiogenesis in ischemic heart disease. Nat Med 1997, 3:158–164.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995, 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  10. Simons M: General concepts of angiogenesis. 2000, Up To Date. URL: http://www.home.caregroup.org; accessed September 10, 2001.

  11. Tofukuji M, Metais C, Li J, et al.: Myocardial VEGF expression after cardiopulmonary bypass and cardioplegia. Circulation 1998, 98(suppl):II242–246;II247-II248.

    PubMed  CAS  Google Scholar 

  12. Harada K, Friedman L, Lopez JJ, et al.: Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 1996, 270:H1791–802.

    PubMed  CAS  Google Scholar 

  13. Banai S, Jaklitsch MT, Shou M, et al.: Angiogenicinduced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994, 89:2183–2189.

    PubMed  CAS  Google Scholar 

  14. Lopez JJ, Laham RJ, Stamler A, et al.: VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998, 40:272–281.

    Article  PubMed  CAS  Google Scholar 

  15. Cuevas P, Carceller F, Ortega S, et al.: Hypotensive activity of fibroblast growth factor. Science 1991, 254:1208–1210.

    Article  PubMed  CAS  Google Scholar 

  16. Lopez JJ, Laham RJ, Carrozza JP, et al.: Hemodynamic effects of intracoronary VEGF delivery: evidence of tachyphylaxis and NO dependence of response. Am J Physiol 1997, 273:H1317–323.

    PubMed  CAS  Google Scholar 

  17. Moulton KS, Heller E, Konerding MA, et al.: Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 1999, 99:1726–1732.

    PubMed  CAS  Google Scholar 

  18. Post MJ, Laham RJ, Sellke FW, Simons M: Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001, 49:522–531.

    Article  PubMed  CAS  Google Scholar 

  19. Faham S, Hileman RE, Fromm JR, et al.: Heparin structure and interactions with basic fibroblast growth factor. Science 1996, 271:1116–1120.

    Article  PubMed  CAS  Google Scholar 

  20. Casscells W, Speir E, Sasse J, et al.: Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest 1990, 85:433–441.

    PubMed  CAS  Google Scholar 

  21. Bernotat-Danielowski S, Sharma HS, Schott RJ, Schaper W: Generation and localisation of monoclonal antibodies against fibroblast growth factors in ischaemic collateralised porcine myocardium. Cardiovasc Res 1993, 27:1220–1228.

    PubMed  CAS  Google Scholar 

  22. Schneider H, Huse K: Arterial gene therapy. Lancet 1996, 348:1380–1381; 1381–1382.

    Article  PubMed  CAS  Google Scholar 

  23. Battler A, Scheinowitz M, Bor A, et al.: Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993, 22:2001–2006.

    Article  PubMed  CAS  Google Scholar 

  24. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al.: Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992, 257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  25. Laham RJ, Rezaee M, Post M, et al.: Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 2000, 292:795–802.

    PubMed  CAS  Google Scholar 

  26. Harada K, Grossman W, Friedman M, et al.: Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 1994, 94:623–630.

    Article  PubMed  CAS  Google Scholar 

  27. Sato K, Laham RJ, Pearlman JD, et al.: Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 2000, 70:2113–2118.

    Article  PubMed  CAS  Google Scholar 

  28. Rajanayagam MA, Shou M, Thirumurti V, et al.: Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol 2000, 35:519–526.

    Article  PubMed  CAS  Google Scholar 

  29. Simons M, Bonow RO, Chronos NA, et al.: Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000, 102:E73–86.

    PubMed  CAS  Google Scholar 

  30. Laham RJ, Simons M, Sellke F: Gene transfer for angiogenesis in coronary artery disease. Ann Rev Med 2001, 52:485–502.

    Article  PubMed  CAS  Google Scholar 

  31. Simons M, Laham R: Therapeutic angiogenesis in myocardial ischemia. In In Angiogenesis and Cardiovascular Disease. Edited by Simons M. New York: Oxford University Press; 1999.

    Google Scholar 

  32. Sellke FW, Wang SY, Friedman M, et al.: Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation. Am J Physiol 1994, 267:H1303-H1311.

    PubMed  CAS  Google Scholar 

  33. Laham RJ, Razaee M, Post M, et al.: Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 1999, 27:821–826.

    PubMed  CAS  Google Scholar 

  34. Laham RJ, Simons M, Hung D: Subxiphoid access of the normal pericardium: a novel drug delivery technique. Catheter Cardiovasc Interv 1999, 47:109–111.

    Article  PubMed  CAS  Google Scholar 

  35. Laham R, Rezaee M, Garcia L, et al.: Tissue and myocardial distribution of intracoronary, intravenous, intrapericardial, and intramyocardial 125-I-labeled basic fibroblast growth factor (bFGF) favor intramyocardial delivery. J Am Coll Cardiol 2000, 35:10A.

    Google Scholar 

  36. Kornowski R, Leon MB, Fuch S, et al.: Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000, 35:1031–1039.

    Article  PubMed  CAS  Google Scholar 

  37. Rosengart TK, Lee LY, Port JL, et al.: Video assisted epicardial delivery of angiogenic gene therapy to the human myocardium utilizing an adenovirus vector encoding for VEGF-121. Circulation 1999, 100(suppl I):I-770.

    Google Scholar 

  38. Edelman ER, Nugent MA, Karnovsky MJ: Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci U S A 1993, 90:1513–1517.

    Article  PubMed  CAS  Google Scholar 

  39. Laham RJ, Sellke FW, Edelman ER, et al.: Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebocontrolled trial. Circulation 1999, 100:1865–1571. This phase I study demonstrated clinical efficacy of FGF therapy using a perivascular delivery technique.

    PubMed  CAS  Google Scholar 

  40. Laham R, Simons M: Therapeutic angiogenesis for management of refractory angina. 2001, Up to Date. Accessible at URL: http://www.home.caregroup.org; accessed September 10, 2001.

  41. Losordo DW, Vale PR, Symes JF, et al.: Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998, 98:2800–2804.

    PubMed  CAS  Google Scholar 

  42. Rosengart TK, Lee LY, Patel SR, et al.: Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF-121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999, 100:468–474.

    PubMed  CAS  Google Scholar 

  43. Hendel RC, Henry TD, Rocha-Singh K, et al.: Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 2000, 101:118–121.

    PubMed  CAS  Google Scholar 

  44. Gibson CM, Ryan K, Sparano A, et al.: Angiographic methods to assess human coronary angiogenesis. Am Heart J 1999, 137:169–179.

    Article  PubMed  CAS  Google Scholar 

  45. Domanski M, Garg R, Yusuf S: Prognosis in congestive heart failure. In In Congestive Heart Failure. Edited by Greenberg B. New York: Springer-Verlag; 1993

    Google Scholar 

  46. Schumacher B, Pecher P, von Specht BU, Stegmann T, et al.: Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998, 97:645–650.

    PubMed  CAS  Google Scholar 

  47. Ruel M, Laham RJ, Niemann D, et al.: Late nuclear perfusion imaging follow up after perivascular implantation of FGF-2. Presented at the American Heart Association Scientific Sessions, Anaheim, CA, November 11–14, 2001. In this presentation, persistent long-term benefits of FGF therapy using perivascular administration were reported.

  48. Laham RJ, Chronos NA, Pike M, et al.: Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 2000, 36:2132–2139. Using an intracoronary delivery method, the phase I study documented functionally significant therapeutic angiogenesis.

    Article  PubMed  CAS  Google Scholar 

  49. Henry T: Double-blind, placebo-controlled trial of recombinant human vascular endothelial growth factor: VEGF in Ischemia for Vascular Angiogenesis (VIVA) trial. Presented at the American College of Cardiology 48th Scientific Session, New Orleans, LA, March 7–10, 1999. The phase II clinical trial of therapeutic angiogenesis with VEGF failed to show benefit in clinical outcome or cardiac function.

  50. Henry T, Annex BH, Azrin MA, et al.: Final results of the VIVA trial of rhVEGF human therapeutic angiogenesis. Circulation 1999, 100(suppl I):I-476. The concluding publication on the phase II study of VEGF angiogenic therapy confirmed a lack of significant improvement in the treatment groups.

    Google Scholar 

  51. Chronos NA: The FGF-2 Initiating Revascularization Support Trial. Presented at the The American College of Cardiology 49th Scientific Session, Anaheim, CA, March 12–15 2000. This phase II clinical trial of FGF therapeutic angiogenesis suggested symptomatic improvement in patients treated with growth factor and increased exercise capacity in older patients.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, T.A., Sellke, F.W. & Laham, R.J. Therapeutic angiogenesis for coronary artery disease. Curr Treat Options Cardio Med 4, 65–74 (2002). https://doi.org/10.1007/s11936-002-0027-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-002-0027-z

Keywords

Navigation