Skip to main content

Advertisement

Log in

Genomic Subtyping in Bladder Cancer

  • Urothelial Cancer (S Daneshmand, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

A Correction to this article was published on 14 May 2020

This article has been updated

Abstract

Purpose of Review

Molecular characterization of cancer allows us to understand oncogenesis and clinical prognosis as well as facilitates development of biomarkers and treatment. Our aim was to review the current literature on genomic characterization of bladder cancer, and how far we are in implementing genomics into clinical practice.

Recent Findings

Bladder cancers are molecularly diverse tumors with a high mutational rate. On molecular level, bladder cancer can be categorized into at least six subtypes called luminal-papillary, luminal-unstable, luminal non-specified, basal-squamous, neuroendocrine-like, and stroma-rich. These subtypes have characteristic genomic and transcriptomic profiles and appear to have different prognoses.

Summary

Several molecular subtypes have been identified in bladder cancer. Prospective trials are underway to validate the applicability of genomic subtypes for clinical decision making. Further integrative analyses of genomic alterations, gene expression, epigenetics, and proteomics need to be performed before genomic subtyping can be attained in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 14 May 2020

    The original version of this article contained a mistake. The included Conflict of Interest statement was incorrect.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976;260:170–3.

    Article  CAS  PubMed  Google Scholar 

  2. Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. Methods Mol Biol. 2015;1238:3–25.

    Article  PubMed  Google Scholar 

  3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  4. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  5. TCGA Research Network. The Cancer Genome Atlas Program [Internet]. The Cancer Genome Atlas Program. [cited 2019 Jul 1]. Available from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

  6. Kassouf W, Traboulsi SL, Kulkarni GS, Breau RH, Zlotta A, Fairey A, et al. CUA guidelines on the management of non-muscle invasive bladder cancer. Can Urol Assoc J. 2015;9:E690–704.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–5 discussion 475–7.

    Article  PubMed  Google Scholar 

  8. Witjes JA, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins HM, et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2017;71:462–75.

    Article  Google Scholar 

  9. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Article  CAS  Google Scholar 

  10. Cote RJ, Esrig D, Groshen S, Jones PA, Skinner DG. p53 and treatment of bladder cancer. Nature. 1997;385:123–5.

    Article  CAS  PubMed  Google Scholar 

  11. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996;381:713–6.

    Article  CAS  PubMed  Google Scholar 

  12. Stadler WM, Lerner SP, Groshen S, Stein JP, Shi S-R, Raghavan D, et al. Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. J Clin Oncol. 2011;29:3443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malats N, Bustos A, Nascimento CM, Fernandez F, Rivas M, Puente D, et al. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol. 2005;6:678–86.

    Article  CAS  PubMed  Google Scholar 

  14. •• Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2018;174:1033 This study is one of the largest molecular profiling studies on muscle-invasive bladder cancer, and the first to report survival-related subsets within genomic subtypes based on lncRNA and miRNA profiling. The authors did an integrative analysis of genomic mutations, trancriptome, DNA methylation, lncRNAs, miRNAs and proteome. The study also described how the APOBEC-mutation signature drives high mutational rate in bladder cancer.

  15. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci. 2013;110:6021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Allory Y, Beukers W, Sagrera A, Flández M, Marqués M, Márquez M, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360–6.

    Article  CAS  PubMed  Google Scholar 

  17. • Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019;381:338–48 The first phase II study reporting outcomes of molecular targeted therapy in bladder cancer by FGFR tyrosine kinase inhibitors.

    Article  CAS  PubMed  Google Scholar 

  18. • Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, Galsky MD, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Can Discov. 2018;8:812–21 A phase I study that reported outcomes of FGFR 1–3 inhibitor in bladder cancer.

    Article  CAS  Google Scholar 

  19. Milowsky MI, Iyer G, Regazzi AM, Al-Ahmadie H, Gerst SR, Ostrovnaya I, et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 2013;112:462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Q, Damish AW, Frazier Z, Liu D, Reznichenko E, Kamburov A, et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer. Clin Cancer Res. 2019;25:977–88.

    Article  CAS  PubMed  Google Scholar 

  22. Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, Al-Ahmadie H, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 2014;4:1140–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Plimack ER, Dunbrack RL, Brennan TA, Andrake MD, Zhou Y, Serebriiskii IG, et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol. 2015;68:959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai YC, Nichols PW, Hiti AL, Williams Z, Skinner DG, Jones PA. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res. 1990;50:44–7.

    CAS  PubMed  Google Scholar 

  26. • Hurst CD, Alder O, Platt FM, Droop A, Stead LF, Burns JE, et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. 2017;32:701–7 A recent genomic profiling study on 140 stage Ta tumors. They reported two distinctive genomic subtypes within pTa bladder cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene. 2005;24:5218–25.

    Article  CAS  PubMed  Google Scholar 

  28. Sibley K, Cuthbert-Heavens D, Knowles MA. Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene. 2001;20:686–91.

    Article  CAS  PubMed  Google Scholar 

  29. •• Hedegaard J, Lamy P, Nordentoft I, Algaba F, Høyer S, Ulhøi BP, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell. 2016;30:27–42 This is the largest profling study on NMIBC to date. The main finding of this study was that there appears to be at least 3 molecular subtypes within NMIBC.

    Article  CAS  PubMed  Google Scholar 

  30. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632–42.

    Article  CAS  PubMed  Google Scholar 

  31. Jarmalaite S, Jankevicius F, Kurgonaite K, Suziedelis K, Mutanen P, Husgafvel-Pursiainen K. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology. 2008;75:145–51.

    Article  CAS  PubMed  Google Scholar 

  32. Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010;70:8169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marsit CJ, Houseman EA, Christensen BC, Gagne L, Wrensch MR, Nelson HH, et al. Identification of methylated genes associated with aggressive bladder cancer. Freitag M, editor. PLoS One. 2010;5:e12334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gurung PMS, Barnett AR, Wilson JS, Hudson J, Ward DG, Messing EM, et al. Prognostic DNA methylation biomarkers in high-risk non-muscle-invasive bladder cancer: a systematic review to identify loci for prospective validation. Eur Urol Focus. 2019.

  35. Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res. 2011;17:5582–92.

    Article  CAS  PubMed  Google Scholar 

  36. Xylinas E, Hassler MR, Zhuang D, Krzywinski M, Erdem Z, Robinson BD, et al. An epigenomic approach to improving response to neoadjuvant cisplatin chemotherapy in bladder cancer. Biomolecules. 2016;6:37.

    Article  PubMed Central  CAS  Google Scholar 

  37. Todenhöfer T, Seiler R, Stewart C, Moskalev I, Gao J, Ladhar S, et al. Selective inhibition of the lactate transporter MCT4 reduces growth of invasive bladder cancer. Mol Cancer Ther. 2018;17:2746–55.

    Article  PubMed  Google Scholar 

  38. García-Baquero R, Puerta P, Beltran M, Alvarez-Mújica M, Alvarez-Ossorio JL, Sánchez-Carbayo M. Methylation of tumor suppressor genes in a novel panel predicts clinical outcome in paraffin-embedded bladder tumors. Tumour Biol. 2014;35:5777–86.

    Article  PubMed  CAS  Google Scholar 

  39. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  40. Quan J, Pan X, Zhao L, Li Z, Dai K, Yan F, et al. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: a systematic review and meta-analysis. Onco Targets Ther. 2018;11:6415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dyrskjøt L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R, et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 2009;69:4851–60.

    Article  PubMed  CAS  Google Scholar 

  42. Catto JWF, Miah S, Owen HC, Bryant H, Myers K, Dudziec E, et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 2009;69:8472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • De Jong JJ, Liu Y, Robertson AG, Seiler R, Groenenveld CS, Van Der Hejden MS, et al. Long non-coding RNAs identify a subset of luminal muscle-invasive bladder cancer patients with favorable prognosis. Genome Med. 2019;11(1):60 This study is one of the first to report on the integration of trancriptomic and epigenetic profiling and how lncRNA profiling can define a subset within luminal MIBC that has a more favourable prognosis.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dyrskjøt L, Thykjaer T, Kruhøffer M, Jensen JL, Marcussen N, Hamilton-Dutoit S, et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet. 2003;33:90–6.

    Article  PubMed  CAS  Google Scholar 

  45. Blaveri E, Simko JP, Korkola JE, Brewer JL, Baehner F, Mehta K, et al. Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res. 2005;11:4044–55.

    Article  CAS  PubMed  Google Scholar 

  46. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci. 2009;106:14016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sjödahl G, Lauss M, Lövgren K, Chebil G, Gudjonsson S, Veerla S, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18:3377–86.

    Article  PubMed  CAS  Google Scholar 

  48. Aine M, Eriksson P, Liedberg F, Sjödahl G, Höglund M. Biological determinants of bladder cancer gene expression subtypes. Sci Rep. 2015;5:10957.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci. 2014;111:3110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biton A, Bernard-Pierrot I, Lou Y, Krucker C, Chapeaublanc E, Rubio-Pérez C, et al. Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep. 2014;9:1235–45.

    Article  CAS  PubMed  Google Scholar 

  52. •• Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R, et al. The consensus molecular classification of muscle-invasive bladder cancer. bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2018;11:488460. Available from: https://www.biorxiv.org/content/10.1101/488460v1.full. This study reports how the consensus molecular subtypes of muscle-invasive bladder cancer were found based on earlier subtyping classes and public transcriptomic data of 1750 MIBCs.

  53. • Lotan Y, Boorjian SA, Zhang J, Bivalacqua TJ, Porten SP, Wheeler T, et al. Molecular subtyping of clinically localized urothelial carcinoma reveals lower rates of pathological upstaging at radical cystectomy among luminal tumors. Eur Urol. 2019;76:200–6 The authors performed genomic subtyping on 206 cT1-T2 bladder cancers and found out that pathological upstaging at the time of radical cystectomy to non-organ confined disease was less common in the luminal subtype.

  54. Choi W, McConkey DJ. ERCC2 mutation: the marker for chemosensitivity in primary and secondary muscle-invasive bladder cancers. Eur Urol. 2019;75:240–1.

    Article  PubMed  Google Scholar 

  55. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389:67–76.

    Article  CAS  PubMed  Google Scholar 

  57. •• Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters B, Douglas J, et al. Impact of molecular subtypes in muscle-invasive bladder Cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol. 2017;72:544–54 This study was the first to report the outcomes of a single sample molecular classifier in MIBC. Their study confirms earlier findings that basal subtype acquires the best response to NAC in terms of overall survival.

    Article  CAS  PubMed  Google Scholar 

  58. • Batista da Costa J, Gibb EA, Bivalacqua TJ, Liu Y, Oo HZ, Miyamoto DT, et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin Cancer Res. 2019;25:3908–20 This study is one of the most comprehensive studies to date to report molecular characteristics of the rare neuroendocrine-like subtype in bladder cancer. The authors developed a single sample classifier to identify neuroendocrine-like bladder cancers based on transcriptomic profiling.

  59. Kim J, Kwiatkowski D, McConkey DJ, Meeks JJ, Freeman SS, Bellmunt J, et al. The cancer genome atlas expression subtypes stratify response to checkpoint inhibition in advanced urothelial cancer and identify a subset of patients with high survival probability. Eur Urol. 2019;75:961–4.

    Article  CAS  PubMed  Google Scholar 

  60. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379:2220–9.

    Article  CAS  PubMed  Google Scholar 

  61. • Efstathiou JA, Mouw KW, Gibb EA, Liu Y, Wu C-L, Drumm MR, et al. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for muscle-invasive bladder cancer. Eur Urol. 2019;76:59–68 The authors performed transcriptomic profiling on 136 MIBCs treated with trimodal therapy. Immune infiltration in the tumor tissue was associated with improved disease specific survival with trimodal therapy.

  62. Pouessel D, Neuzillet Y, Mertens LS, van der Heijden MS, de Jong J, Sanders J, et al. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment. Ann Oncol. 2016;27:1311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sjödahl G, Eriksson P, Lövgren K, Marzouka N-A-D, Bernardo C, Nordentoft I, et al. Discordant molecular subtype classification in the basal-squamous subtype of bladder tumors and matched lymph-node metastases. Mod Pathol. 2018;31:1869–81.

    Article  PubMed  CAS  Google Scholar 

  64. Guo CC, Dadhania V, Zhang L, Majewski T, Bondaruk J, Sykulski M, et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur Urol. 2016;70:611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Raspollini MR, Sardi I, Giunti L, Di Lollo S, Baroni G, Stomaci N, et al. Plasmacytoid urothelial carcinoma of the urinary bladder: clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis of a case series. Hum Pathol. 2011;42:1149–58.

    Article  CAS  PubMed  Google Scholar 

  66. Al-Ahmadie HA, Iyer G, Lee BH, Scott SN, Mehra R, Bagrodia A, et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat Genet. 2016;48:356–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Warrick JI, Kaag M, Raman JD, Chan W, Tran T, Kunchala S, et al. FOXA1 and CK14 as markers of luminal and basal subtypes in histologic variants of bladder cancer and their associated conventional urothelial carcinoma. Virchows Arch. 2017;471:337–45.

    Article  CAS  PubMed  Google Scholar 

  68. Weyerer V, Weisser R, Moskalev EA, Haller F, Stoehr R, Eckstein M, et al. Distinct genetic alterations and luminal molecular subtype in nested variant of urothelial carcinoma (NVUC). Histopathology. 2019. https://doi.org/10.1111/his.13958.

  69. Genitsch V, Kollár A, Vandekerkhove G, Blarer J, Furrer M, Annala M, et al. Morphologic and genomic characterization of urothelial to sarcomatoid transition in muscle-invasive bladder cancer. Urol Oncol. 2019. https://doi.org/10.1016/j.urolonc.2019.09.025.

  70. Guo CC, Majewski T, Zhang L, Yao H, Bondaruk J, Wang Y, et al. Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer. Cell Rep. 2019;27:1781–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Narayan VM, Gupta S, Davicioni E, Murugan P, Gibb EA, Konety B. Genomic analysis and treatment response of a bladder urothelial carcinoma with sarcomatoid variant histology. Clin Genitourin Cancer. 2019. https://doi.org/10.1016/j.clgc.2019.05.019.

  72. Reis H, van der Vos KE, Niedworok C, Herold T, Módos O, Szendrői A, et al. Pathogenic and targetable genetic alterations in 70 urachal adenocarcinomas. Int J Cancer. 2018;143:1764–73.

    Article  CAS  PubMed  Google Scholar 

  73. Kardos J, Wobker SE, Woods ME, Nielsen ME, Smith AB, Wallen EM, et al. Comprehensive molecular characterization of urachal adenocarcinoma reveals commonalities with colorectal cancer, including a hypermutable phenotype. JCO Precision Oncol. 2017. https://doi.org/10.1200/PO.17.00027.

  74. Molitor M, Junker K, Eltze E, Toma M, Denzinger S, Siegert S, et al. Comparison of structural genetics of non-schistosoma-associated squamous cell carcinoma of the urinary bladder. Int J Clin Exp Pathol. 2015;8:8143–58.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Tuomas Jalanko has received grants from Finnish Urological Association, Urological Research Foundation Finland, Sigrid Juselius Foundation, and Emil Aaltonen Foundation.

Joep de Jong has received a Summer Medical Student Fellowship (Herbert Brendler, MD Research Fund) from the American Urological Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Black.

Ethics declarations

Conflict of Interest

Julia Oto, Emma Plana, José Vicente Sánchez-González, Jorge García-Olaverri, Álvaro Fernández-Pardo, Francisco España, Manuel Martínez-Sarmiento, César D. Vera-Donoso, Silvia Navarro, and Pilar Medina each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of these authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Urothelial Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalanko, T., de Jong, J.J., Gibb, E.A. et al. Genomic Subtyping in Bladder Cancer. Curr Urol Rep 21, 9 (2020). https://doi.org/10.1007/s11934-020-0960-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-020-0960-y

Keywords

Navigation