Skip to main content

Advertisement

Log in

Silk Fibroin Scaffolds for Urologic Tissue Engineering

  • Regenerative Medicine (A Atala, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability, and biocompatibility. SF scaffolds have been used in multiple animal models and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol. 2006;147 Suppl 2:S80–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Edelstein RA, Bauer SB, Kelly MD, et al. The long-term urological response of neonates with myelodysplasia treated proactively with intermittent catheterization and anticholinergic therapy. J Urol. 1995;154(4):1500–4.

    Article  CAS  PubMed  Google Scholar 

  3. Kaefer M, Pabby A, Kelly M, Darbey M, Bauer SB. Improved bladder function after prophylactic treatment of the high risk neurogenic bladder in newborns with myelomentingocele. J Urol. 1999;162(3 Pt 2):1068–71.

    Article  CAS  PubMed  Google Scholar 

  4. Hensle TW, Gilbert SM. A review of metabolic consequences and long-term complications of enterocystoplasty in children. Curr Urol Rep. 2007;8(2):157–62.

    Article  PubMed  Google Scholar 

  5. Somani BK, Kumar V, Wong S, et al. Bowel dysfunction after transposition of intestinal segments into the urinary tract: 8-year prospective cohort study. J Urol. 2007;177(5):1793–8.

    Article  PubMed  Google Scholar 

  6. Amini E, Djaladat H. Long-term complications of urinary diversion. Curr Opin Urol. 2015;25(6):570–7.

    Article  PubMed  Google Scholar 

  7. Berger I, Wehrberger C, Ponholzer A, et al. Impact of the use of bowel for urinary diversion on perioperative complications and 90-day mortality in patients aged 75 years or older. Urol Int. 2015;94(4):394–400.

    Article  PubMed  Google Scholar 

  8. Kim KR, Suh JG, Paick JS, Kim SW. Surgical outcome of urethroplasty using penile circular fasciocutaneous flap for anterior urethral stricture. World J Mens Health. 2014;32(2):87–92.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ding J, Li Q, Li S, et al. Ten years’ experience for hypospadias repair: combined buccal mucosa graft and local flap for urethral reconstruction. Urol Int. 2014;93(4):454–9.

    Article  PubMed  Google Scholar 

  10. le Son T, le Hung T, le Thang C, Linh NT. The use of dermal graft in severe chordee hypospadias repair: experience from Vietnam. Pediatr Surg Int. 2015;31(3):291–5.

    Article  Google Scholar 

  11. Caldamone AA, Edstrom LE, Koyle MA, Rabinowitz R, Hulbert WC. Buccal mucosal grafts for urethral reconstruction. Urology. 1998;51(5A Suppl):15–9.

    Article  CAS  PubMed  Google Scholar 

  12. Barbagli G, Palminteri E, Guazzoni G, Montorsi F, Turini D, Lazzeri M. Bulbar urethroplasty using buccal mucosa grafts placed on the ventral, dorsal or lateral surface of the urethra: are results affected by the surgical technique? J Urol. 2005;174(3):955–7. discussion 957-958.

    Article  PubMed  Google Scholar 

  13. Monfort G, Bretheau D, Di Benedetto V, Bankole R. Urethral stricture in children: treatment by urethroplasty with bladder mucosa graft. J Urol. 1992;148(5):1504–6.

    CAS  PubMed  Google Scholar 

  14. Foinquinos RC, Calado AA, Janio R, Griz A, Macedo Jr A, Ortiz V. The tunica vaginalis dorsal graft urethroplasty: initial experience. Int Braz J Urol. 2007;33(4):523–9. discussion 529-531.

    Article  PubMed  Google Scholar 

  15. Sinha RJ, Singh V, Sankhwar SN, Dalela D. Donor site morbidity in oral mucosa graft urethroplasty: implications of tobacco consumption. BMC Urol. 2009;9:15.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fasolis M, Zavattero E, Sedigh O, et al. Oral mucosa harvest for urologic reconstruction: role of maxillofacial surgeon and donor-site morbidity evaluation. J Craniofac Surg. 2014;25(2):604–6.

    Article  PubMed  Google Scholar 

  17. Kropp BP, Sawyer BD, Shannon HE, et al. Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J Urol. 1996;156(2 Pt 2):599–607.

    CAS  PubMed  Google Scholar 

  18. Wefer J, Sievert KD, Schlote N, et al. Time dependent smooth muscle regeneration and maturation in a bladder acellular matrix graft: histological studies and in vivo functional evaluation. J Urol. 2001;165(5):1755–9.

    Article  CAS  PubMed  Google Scholar 

  19. Cartwright LM, Shou Z, Yeger H, Farhat WA. Porcine bladder acellular matrix porosity: impact of hyaluronic acid and lyophilization. J Biomed Mater Res A. 2006;77(1):180–4.

    Article  PubMed  Google Scholar 

  20. Goldstein MB, Dearden LC, Gualtieri V. Regeneration of subtotally cystectomized bladder patched with omentum: an experimental study in rabbits. J Urol. 1967;97(4):664–8.

    CAS  PubMed  Google Scholar 

  21. Baumert H, Simon P, Hekmati M, et al. Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering. Eur Urol. 2007;52(3):884–90.

    Article  PubMed  Google Scholar 

  22. Hattori K, Joraku A, Miyagawa T, Kawai K, Oyasu R, Akaza H. Bladder reconstruction using a collagen patch prefabricated within the omentum. Int J Urol. 2006;13(5):529–37.

    Article  PubMed  Google Scholar 

  23. Portis AJ, Elbahnasy AM, Shalhav AL, et al. Laparoscopic augmentation cystoplasty with different biodegradable grafts in an animal model. J Urol. 2000;164(4):1405–11.

    Article  CAS  PubMed  Google Scholar 

  24. Kambic H, Kay R, Chen JF, Matsushita M, Harasaki H, Zilber S. Biodegradable pericardial implants for bladder augmentation: a 2.5-year study in dogs. J Urol. 1992;148(2 Pt 2):539–43.

    CAS  PubMed  Google Scholar 

  25. Jelly O. Segmental cystectomy with peritoneoplasty. Urol Int. 1970;25(3):236–44.

    Article  CAS  PubMed  Google Scholar 

  26. Kelami A. Lyophilized human dura as a bladder wall substitute: experimental and clinical results. J Urol. 1971;105(4):518–22.

    CAS  PubMed  Google Scholar 

  27. Iijima K, Igawa Y, Imamura T, et al. Transplantation of preserved human amniotic membrane for bladder augmentation in rats. Tissue Eng. 2007;13(3):513–24.

    Article  CAS  PubMed  Google Scholar 

  28. Fishman IJ, Flores FN, Scott FB, Spjut HJ, Morrow B. Use of fresh placental membranes for bladder reconstruction. J Urol. 1987;138(5):1291–4.

    CAS  PubMed  Google Scholar 

  29. Reddy PP, Barrieras DJ, Wilson G, et al. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol. 2000;164(3 Pt 2):936–41.

    Article  CAS  PubMed  Google Scholar 

  30. Merguerian PA, Reddy PP, Barrieras DJ, et al. Acellular bladder matrix allografts in the regeneration of functional bladders: evaluation of large-segment (>24 cm) substitution in a porcine model. BJU Int. 2000;85(7):894–8.

    Article  CAS  PubMed  Google Scholar 

  31. Probst M, Piechota HJ, Dahiya R, Tanagho EA. Homologous bladder augmentation in dog with the bladder acellular matrix graft. BJU Int. 2000;85(3):362–71.

    Article  CAS  PubMed  Google Scholar 

  32. Brown AL, Farhat W, Merguerian PA, Wilson GJ, Khoury AE, Woodhouse KA. 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials. 2002;23(10):2179–90.

    Article  CAS  PubMed  Google Scholar 

  33. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  34. Lai JY, Yoon CY, Yoo JJ, Wulf T, Atala A. Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J Urol. 2002;168(4 Pt 2):1853–7. discussion 1858.

    Article  PubMed  Google Scholar 

  35. Nakanishi Y, Chen G, Komuro H, et al. Tissue-engineered urinary bladder wall using PLGA mesh-collagen hybrid scaffolds: a comparison study of collagen sponge and gel as a scaffold. J Pediatr Surg. 2003;38(12):1781–4.

    Article  PubMed  Google Scholar 

  36. Atala A, Freeman MR, Vacanti JP, Shepard J, Retik AB. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol. 1993;150(2 Pt 2):608–12.

    CAS  PubMed  Google Scholar 

  37. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  38. Godbole P, Mackinnon AE. Expanded PTFE bladder neck slings for incontinence in children: the long-term outcome. BJU Int. 2004;93(1):139–41.

    Article  CAS  PubMed  Google Scholar 

  39. Pattison M, Webster TJ, Leslie J, Kaefer M, Haberstroh KM. Evaluating the in vitro and in vivo efficacy of nano-structured polymers for bladder tissue replacement applications. Macromol Biosci. 2007;7(5):690–700.

    Article  CAS  PubMed  Google Scholar 

  40. Rohrmann D, Albrecht D, Hannappel J, Gerlach R, Schwarzkopp G, Lutzeyer W. Alloplastic replacement of the urinary bladder. J Urol. 1996;156(6):2094–7.

    Article  CAS  PubMed  Google Scholar 

  41. Adelow CA, Frey P. Synthetic hydrogel matrices for guided bladder tissue regeneration. Methods Mol Med. 2007;140:125–40.

  42. Falke G, Caffaratti J, Atala A. Tissue engineering of the bladder. World J Urol. 2000;18(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  43. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  44. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007;28(35):5280–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Joseph DB, Borer JG, De Filippo RE, Hodges SJ, McLorie GA. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol. 2014;191(5):1389–95.

    Article  CAS  PubMed  Google Scholar 

  46. Schaefer M, Kaiser A, Stehr M, Beyer HJ. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol. 2013;9(6 Pt A):878–83.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang F, Liao L. Tissue engineered cystoplasty augmentation for treatment of neurogenic bladder using small intestinal submucosa: an exploratory study. J Urol. 2014;192(2):544–50.

    Article  PubMed  Google Scholar 

  48. Palminteri E, Berdondini E, Colombo F, Austoni E. Small intestinal submucosa (SIS) graft urethroplasty: short-term results. Eur Urol. 2007;51(6):1695–701. discussion 1701.

    Article  PubMed  Google Scholar 

  49. Fiala R, Vidlar A, Vrtal R, Belej K, Student V. Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol. 2007;51(6):1702–8. discussion 1708.

    Article  PubMed  Google Scholar 

  50. Farahat YA, Elbahnasy AM, El-Gamal OM, Ramadan AR, El-Abd SA, Taha MR. Endoscopic urethroplasty using small intestinal submucosal patch in cases of recurrent urethral stricture: a preliminary study. J Endourol. 2009;23(12):2001–5.

    Article  PubMed  Google Scholar 

  51. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  CAS  PubMed  Google Scholar 

  52. Wong Po Foo C, Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev. 2002;54(8):1131–43.

    Article  CAS  PubMed  Google Scholar 

  53. Kaplan D. Silk polymers: materials science and biotechnology. Washington, DC: American Chemical Society; 1994.

    Google Scholar 

  54. Cunniff PM, Fossey SA, Auerbach MA, et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol. 1994;5(8):401–10.

    Article  CAS  Google Scholar 

  55. Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424(6952):1057–61.

    Article  CAS  PubMed  Google Scholar 

  56. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002;3(6):1233–9.

    Article  CAS  PubMed  Google Scholar 

  57. Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules. 2004;5(3):718–26.

    Article  CAS  PubMed  Google Scholar 

  58. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules. 2004;5(3):786–92.

    Article  CAS  PubMed  Google Scholar 

  59. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–85.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29(24-25):3415–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials. 2003;24(18):3079–85.

    Article  CAS  PubMed  Google Scholar 

  62. Franck D, Gil ES, Adam RM, et al. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells. PLoS One. 2013;8(2):e56237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A. 2004;71(3):528–37.

    Article  PubMed  Google Scholar 

  64. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54(1):139–48.

    Article  CAS  PubMed  Google Scholar 

  65. Algarrahi K, Franck D, Ghezzi CE, et al. Acellular bi-layer silk fibroin scaffolds support functional tissue regeneration in a rat model of onlay esophagoplasty. Biomaterials. 2015;53:149–59.

    Article  CAS  PubMed  Google Scholar 

  66. Chung EJ, Ju HW, Park HJ, Park CH. Three-layered scaffolds for artificial esophagus using poly(varepsilon-caprolactone) nanofibers and silk fibroin: an experimental study in a rat model. J Biomed Mater Res A. 2015;103(6):2057–65.

    Article  CAS  PubMed  Google Scholar 

  67. Franck D, Chung YG, Coburn J, Kaplan DL, Estrada Jr CR, Mauney JR. In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering. J Tissue Eng. 2014;5:2041731414556849.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Jia L, Ghezzi CE, Kaplan DL. Optimization of silk films as substrate for functional corneal epithelium growth. J Biomed Mater Res B Appl Biomater. 2016;104(2):431–441.

  69. Bi F, Shi Z, Liu A, Guo P, Yan S. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft. PLoS One. 2015;10(5):e0125900.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Li JJ, Kim K, Roohani-Esfahani SI, Guo J, Kaplan DL, Zreiqat H. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. J Mater Chem B Mater Biol Med. 2015;3(26):5361–76.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang W, Yang Y, Zhang K, Li Y, Fang G. Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair. Connect Tissue Res. 2015;56(1):25–34.

    Article  PubMed  Google Scholar 

  72. Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc Res Tech. 2015. doi:10.1002/jemt.22532.

  73. Teuschl AH, Schuh C, Halbweis R, et al. A new preparation method for anisotropic silk fibroin nerve guidance conduits and its evaluation in vitro and in a rat sciatic nerve defect model. Tissue Eng Part C Methods. 2015;21(9):945–57.

    Article  CAS  PubMed  Google Scholar 

  74. Flanagan KE, Tien LW, Elia R, Wu J, Kaplan D. Development of a sutureless dural substitute from Bombyx mori silk fibroin. J Biomed Mater Res B Appl Biomater. 2015;103(3):485–94.

    Article  PubMed  Google Scholar 

  75. Clemens MW, Downey S, Agullo F, et al. Clinical application of a silk fibroin protein biologic scaffold for abdominal wall fascial reinforcement. Plast Reconstr Surg Glob Open. 2014;2(11):e246.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Shen Y, Redmond SL, Papadimitriou JM, et al. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomed Mater. 2014;9(1):015015.

    Article  PubMed  Google Scholar 

  77. Mauney JR, Cannon GM, Lovett ML, et al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials. 2011;32(3):808–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Gomez 3rd P, Gil ES, Lovett ML, et al. The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials. 2011;32(30):7562–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Seth A, Chung YG, Gil ES, et al. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials. 2013;34(20):4758–65. Implemented a novel bi-layer scaffold with film casting design that demonstrated decreased intravesical calculus formation and superior urodynamic parameters in a rat animal model of bladder augmentation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Tu DD, Chung YG, Gil ES, et al. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty. Biomaterials. 2013;34(34):8681–9. Bi-layer silk fibroin scaffold use in a large animal model of bladder augmentation proved to be safe and regenerated smooth muscle and a multi-layered urothelium across the entire 6 cm scaffold.

    Article  CAS  PubMed  Google Scholar 

  81. Huang JW, Xu YM, Li ZB, et al. Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. J Biomed Mater Res A. 2016;104(1):9–16.

  82. Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006;98(5):1100–5.

    Article  PubMed  Google Scholar 

  83. Akbal C, Lee SD, Packer SC, Davis MM, Rink RC, Kaefer M. Bladder augmentation with acellular dermal biomatrix in a diseased animal model. J Urol. 2006;176(4 Pt 2):1706–11.

    Article  PubMed  Google Scholar 

  84. Chung YG, Algarrahi K, Franck D, et al. The use of bi-layer silk fibroin scaffolds and small intestinal submucosa matrices to support bladder tissue regeneration in a rat model of spinal cord injury. Biomaterials. 2014;35(26):7452–9. Silk scaffold integration into an animal model with neurogenic bladder secondary to spinal cord injury promoted de novo tissue formation. However, modifications in graft design are still needed to restore aberrant innervation and mitigate host tissue responses in this pathological setting.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Xie M, Song L, Wang J, Fan S, Zhang Y, Xu Y. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res. 2013;184(2):774–81.

    Article  CAS  PubMed  Google Scholar 

  86. Xie M, Xu Y, Song L, Wang J, Lv X, Zhang Y. Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. J Surg Res. 2014;188(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  87. Chung YG, Tu D, Franck D, et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS One. 2014;9(3):e91592. Bi-layer silk fibroin scaffold for onlay urethroplasty in a rabbit model is capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Zou XH, Zhi YL, Chen X, et al. Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence. Biomaterials. 2010;31(18):4872–9.

    Article  CAS  PubMed  Google Scholar 

  89. Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys J. 2009;97(7):2044–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Brown JE, Partlow BP, Berman AM, House MD, Kaplan DL. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study. Am J Obstet Gynecol. 2016;214(1):118 e111–119.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua R. Mauney or Carlos R. Estrada Jr..

Ethics declarations

Conflict of Interest

Bryan S. Sack, Joshua R. Mauney, and Carlos R. Estrada Jr. each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by Joshua R. Mauney and Carlos R. Estrada Jr. involving animal subjects were performed after approval by the appropriate institutional review boards. Grant support provided by 1R21EB020860-01 and 5T32DK060442-12.

Additional information

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sack, B.S., Mauney, J.R. & Estrada, C.R. Silk Fibroin Scaffolds for Urologic Tissue Engineering. Curr Urol Rep 17, 16 (2016). https://doi.org/10.1007/s11934-015-0567-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-015-0567-x

Keywords

Navigation