Skip to main content

Advertisement

Log in

Recurrent Gene Fusions in Prostate Cancer: Their Clinical Implications and Uses

  • Prostate Cancer (D Parekh, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Gene fusions, resulting from chromosomal rearrangements, have been attributed to leukaemias and soft tissue sarcomas. The recent discovery of a recurrent gene fusion TMPRSS2-ERG in approximately half of the prostate cancers tested indicates that gene fusions also play a role in the onset of common epithelial cancers. Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in the Western male population. It is a heterogeneous disease, both in terms of pathology and clinical presentation. Since the discovery of the TMPRSS2-ERG fusion, other gene fusions have been reported, most of which result in the androgen-regulated over-expression of the oncogene ERG or other ETS transcription factors. The high prevalence of these gene fusions represents a distinct class of tumours, which may give more insight in the heterogeneity of the disease. These gene fusions are of interest as biomarkers for diagnosis of prostate cancer, and some of them could be useful in predicting the presence of aggressive disease. This review focuses on the biological significance and clinical implementation of gene fusions, and particularly the most commonly reported TMPRSS2-ERG fusion, in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.

    Article  PubMed  CAS  Google Scholar 

  2. Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet. 2004;36:331–4.

    Article  PubMed  CAS  Google Scholar 

  3. Heim S, Mandahl N, Mitelman F. Genetic convergence and divergence in tumor progression. Cancer Res. 1988;48:5911–6.

    PubMed  CAS  Google Scholar 

  4. • Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8. This is the first report on recurrent gene fusions in prostate cancer.

    Article  PubMed  CAS  Google Scholar 

  5. Tomlins SA, Mehra R, Rhodes DR, et al. TMPRSS2-ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006;66:3396–400.

    Article  PubMed  CAS  Google Scholar 

  6. Helgeson BE, Tomlins SA, Shah N, et al. Characterization of TMPRSS2-ETV5 and SLC45A3-ETV5 gene fusions in prostate cancer. Cancer Res. 2008;68:73–80.

    Article  PubMed  CAS  Google Scholar 

  7. Maher CA, Palanisamy N, Brenner JC, et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci U S A. 2009;106:12353–8.

    Article  PubMed  CAS  Google Scholar 

  8. Pflueger D, Rickman DS, Sboner A, et al. N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. Neoplasia. 2009;11:804–11.

    PubMed  CAS  Google Scholar 

  9. Han B, Mehra R, Dhanasekaran SM, et al. A fluorescence in situ hybridization screen for e26 transformation-specific aberrations: Identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 2008;68:7629–37.

    Article  PubMed  CAS  Google Scholar 

  10. Rickman DS, Soong TD, Moss B, et al. Oncogene-mediated alterations in chromatin conformation. Proc Natl Acad Sci U S A. 2012;109:9083–8.

    Article  PubMed  CAS  Google Scholar 

  11. Mani RS, Tomlins SA, Callahan K, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326:1230.

    Article  PubMed  CAS  Google Scholar 

  12. Haffner MC, Aryee MJ, Toubaji A, et al. Androgen-induced TOB2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42:668–75.

    Article  PubMed  CAS  Google Scholar 

  13. Luedeke M, Linnert CM, Hofer MD, et al. Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes. Cancer Epidemiol Biomarkers Prev. 2009;18:3030–5.

    Article  PubMed  CAS  Google Scholar 

  14. Hermans KG, van Marion R, van Dekken H, et al. TMPRSS2-ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res. 2006;66:10658–63.

    Article  PubMed  CAS  Google Scholar 

  15. Iljin K, Wolf M, Edgren H, et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res. 2006;66:10242–6.

    Article  PubMed  CAS  Google Scholar 

  16. Tomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS gene fusions in prostate cancer: From discovery to daily clinical practice. Eur Urol. 2009;56:275–86.

    Article  PubMed  CAS  Google Scholar 

  17. Perner S, Demichelis F, Beroukhim R, et al. TMPRSS2-ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66:8337–41.

    Article  PubMed  CAS  Google Scholar 

  18. Mehra R, Tomlins SA, Yu J, et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 2008;68:3584–90.

    Article  PubMed  CAS  Google Scholar 

  19. Lin C, Yang L, Tanasa B, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139:1069–83.

    Article  PubMed  CAS  Google Scholar 

  20. Goering W, Ribarska T, Schulz WA. Selective changes of retroelement expression in human prostate cancer. Carcinogenesis. 2011;32:1484–92.

    Article  PubMed  CAS  Google Scholar 

  21. Wang JJ, Liu YX, Wang W, et al. Fusion between TMPRSS2 and ETS family members (ERG, ETV1, ETV4) in prostate cancers from northern china. Asian Pac J Cancer Prev. 2012;13:4935–8.

    Article  PubMed  Google Scholar 

  22. Miyagi Y, Sasaki T, Fujinami K, et al. ETS family-associated gene fusions in japanese prostate cancer: Analysis of 194 radical prostatectomy samples. Mod Pathol. 2010;23:1492–8.

    Article  PubMed  Google Scholar 

  23. Ren S, Peng Z, Mao JH, et al. RNA-seq analysis of prostate cancer in the chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 2012;22:806–21.

    Article  PubMed  CAS  Google Scholar 

  24. Mao X, Yu Y, Boyd LK, et al. Distinct genomic alterations in prostate cancers in chinese and western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res. 2010;70:5207–12.

    Article  PubMed  CAS  Google Scholar 

  25. Mosquera JM, Perner S, Genega EM, et al. Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications. Clin Cancer Res. 2008;14:3380–5.

    Article  PubMed  CAS  Google Scholar 

  26. Cerveira N, Ribeiro FR, Peixoto A, et al. TMPRSS2-ERG gene fusion causing erg overexpression precedes chromosome copy number changes in prostate carcinomas and paired hgpin lesions. Neoplasia. 2006;8:826–32.

    Article  PubMed  CAS  Google Scholar 

  27. Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: An early molecular event associated with invasion. Am J Surg Pathol. 2007;31:882–8.

    Article  PubMed  Google Scholar 

  28. Demichelis F, Fall K, Perner S, et al. TMPRSS2-ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26:4596–9.

    Article  PubMed  CAS  Google Scholar 

  29. Attard G, Clark J, Ambroisine L, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27:253–63.

    Article  PubMed  CAS  Google Scholar 

  30. Rajput AB, Miller MA, De Luca A, et al. Frequency of the TMPRSS2-ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol. 2007;60:1238–43.

    Article  PubMed  CAS  Google Scholar 

  31. Carver BS, Tran J, Gopalan A, et al. Aberrant erg expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41:619–24.

    Article  PubMed  CAS  Google Scholar 

  32. Zong Y, Xin L, Goldstein AS, et al. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci U S A. 2009;106:12465–70.

    Article  PubMed  CAS  Google Scholar 

  33. King JC, Xu J, Wongvipat J, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet. 2009;41:524–6.

    Article  PubMed  CAS  Google Scholar 

  34. Majumder PK, Yeh JJ, George DJ, et al. Prostate intraepithelial neoplasia induced by prostate restricted AKT activation: The mpakt model. Proc Natl Acad Sci U S A. 2003;100:7841–6.

    Article  PubMed  CAS  Google Scholar 

  35. Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine PTEN tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.

    Article  PubMed  CAS  Google Scholar 

  36. Krohn A, Diedler T, Burkhardt L, et al. Genomic deletion of pten is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012;181:401–12.

    Article  PubMed  CAS  Google Scholar 

  37. Schweizer L, Rizzo CA, Spires TE, et al. The androgen receptor can signal through WNT/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol. 2008;9:4.

    Article  PubMed  Google Scholar 

  38. Sun C, Dobi A, Mohamed A, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene. 2008;27:5348–53.

    Article  PubMed  CAS  Google Scholar 

  39. Yu J, Mani RS, Cao Q, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17:443–54.

    Article  PubMed  CAS  Google Scholar 

  40. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2-ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66:8347–51.

    Article  PubMed  CAS  Google Scholar 

  42. Petrovics G, Liu A, Shaheduzzaman S, et al. Frequent overexpression of ets-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene. 2005;24:3847–52.

    Article  PubMed  CAS  Google Scholar 

  43. Winnes M, Lissbrant E, Damber JE, Stenman G. Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol Rep. 2007;17:1033–6.

    PubMed  CAS  Google Scholar 

  44. Yoshimoto M, Joshua AM, Chilton-Macneill S, et al. Three-color fish analysis of TMPRSS2-ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia. 2006;8:465–9.

    Article  PubMed  CAS  Google Scholar 

  45. Lapointe J, Kim YH, Miller MA, et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod Pathol. 2007;20:467–73.

    Article  PubMed  CAS  Google Scholar 

  46. Suh JH, Park JW, Lee C, Moon KC. ERG immunohistochemistry and clinicopathologic characteristics in korean prostate adenocarcinoma patients. Korean J Pathol. 2012;46:423–8.

    Article  PubMed  Google Scholar 

  47. Pettersson A, Graff RE, Bauer SR, et al. The TMPRSS2-ERG rearrangement, ERG expression, and prostate cancer outcomes: A cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2012;21:1497–509.

    Article  PubMed  Google Scholar 

  48. • Clark JP, Cooper CS. ETS gene fusions in prostate cancer. Nat Rev Urol. 2009;6:429–39. An overview is given on common ETS gene fusions: their discovery, their biological significance and clinical implications.

    Article  PubMed  CAS  Google Scholar 

  49. • Wu F, Ding S, Lu J. Truncated ERG proteins affect the aggressiveness of prostate cancer. Med Hypotheses. 2013. Article showing that N-terminal truncated ERG proteins might inhibit the oncogenic transcriptional activation by competitive binding to ETS domain binding sites, resulting in less aggressive prostate cancer features.

  50. Chen Y, Sawyers CL. Coordinate transcriptional regulation by ERG and androgen receptor in fusion-positive prostate cancers. Cancer Cell. 2010;17:415–6.

    Article  PubMed  CAS  Google Scholar 

  51. Mehra R, Han B, Tomlins SA, et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: Molecular evidence for an independent group of diseases. Cancer Res. 2007;67:7991–5.

    Article  PubMed  CAS  Google Scholar 

  52. Lapointe J, Li C, Giacomini CP, et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res. 2007;67:8504–10.

    Article  PubMed  CAS  Google Scholar 

  53. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol. 2011;29:3659–68.

    Article  PubMed  CAS  Google Scholar 

  54. Svensson MA, LaFargue CJ, MacDonald TY, et al. Testing mutual exclusivity of ETS rearranged prostate cancer. Lab Invest. 2011;91:404–12.

    Article  PubMed  CAS  Google Scholar 

  55. Minner S, Gartner M, Freudenthaler F, et al. Marked heterogeneity of ERG expression in large primary prostate cancers. Mod Pathol. 2013;26:106–16.

    Article  PubMed  CAS  Google Scholar 

  56. • Boyd LK, Mao X, Lu YJ. The complexity of prostate cancer: Genomic alterations and heterogeneity. Nat Rev Urol. 2012;9:652–64. Comprehensive overview of the complex genetic landscape of prostate cancer and the heterogeneity that defines this disease.

    Article  PubMed  Google Scholar 

  57. Perner S, Svensson MA, Hossain RR, et al. ERG rearrangement metastasis patterns in locally advanced prostate cancer. Urology. 2010;75:762–7.

    Article  PubMed  Google Scholar 

  58. Groskopf J, Aubin SM, Deras IL, et al. Aptima PCA3 molecular urine test: Development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52:1089–95.

    Article  PubMed  CAS  Google Scholar 

  59. Hessels D, Klein Gunnewiek JM, van Oort I. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44:8–15. discussion −6.

    Article  PubMed  CAS  Google Scholar 

  60. Hessels D, Smit FP, Verhaegh GW, et al. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13:5103–8.

    Article  PubMed  CAS  Google Scholar 

  61. Tomlins SA, Aubin SM, Siddiqui J, et al. Urine TMPRSS2-ERG fusion transcript stratifies prostate cancer risk in men with elevated serum psa. Sci Transl Med. 2011;3:94ra72.

    Article  PubMed  CAS  Google Scholar 

  62. Rostad K, Hellwinkel OJ, Haukaas SA, et al. TMPRSS2-ERG fusion transcripts in urine from prostate cancer patients correlate with a less favorable prognosis. APMIS. 2009;117:575–82.

    Article  PubMed  CAS  Google Scholar 

  63. Young A, Palanisamy N, Siddiqui J, et al. Correlation of urine TMPRSS2-ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol. 2012;138:685–96.

    Article  PubMed  Google Scholar 

  64. Dimitriadis E, Kalogeropoulos T, Velaeti S, et al. Study of genetic and epigenetic alterations in urine samples as diagnostic markers for prostate cancer. Anticancer Res. 2013;33:191–7.

    PubMed  CAS  Google Scholar 

  65. Robert G, Jannink S, Smit F, et al. Rational basis for the combination of PCA3 and TMPRSS2-ERG gene fusion for prostate cancer diagnosis. Prostate. 2013;73:113–20.

    Article  PubMed  CAS  Google Scholar 

  66. • Leyten GH, Hessels D, Jannink SA et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol. 2012: Prostate cancer risk stratification using TMPRSS2 and PCA3.

  67. Tomlins SA, Rhodes DR, Yu J, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13:519–28.

    Article  PubMed  CAS  Google Scholar 

  68. Laxman B, Morris DS, Yu J, et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68:645–9.

    Article  PubMed  CAS  Google Scholar 

  69. Attard G, Swennenhuis JF, Olmos D, et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 2009;69:2912–8.

    Article  PubMed  CAS  Google Scholar 

  70. Wang J, Cai Y, Yu W, et al. Pleiotropic biological activities of alternatively spliced TMPRSS2-ERG fusion gene transcripts. Cancer Res. 2008;68:8516–24.

    Article  PubMed  CAS  Google Scholar 

  71. • Shao L, Tekedereli I, Wang J, et al. Highly specific targeting of the TMPRSS2-ERG fusion gene using liposomal nanovectors. Clin Cancer Res. 2012;18:6648–57. First article on gene fusion targeted therapy using junction spanning siRNAs to fusion gene PCa.

    Article  PubMed  CAS  Google Scholar 

  72. Esgueva R, Perner S. C JL et al. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. Mod Pathol. 2010;23:539–46.

    Article  PubMed  CAS  Google Scholar 

  73. Rickman DS, Pflueger D, Moss B, et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 2009;69:2734–8.

    Article  PubMed  CAS  Google Scholar 

  74. Hermans KG, van der Korput HA, van Marion R, et al. Truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res. 2008;68:7541–9.

    Article  PubMed  CAS  Google Scholar 

  75. Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595–9.

    Article  PubMed  CAS  Google Scholar 

  76. Attard G, Clark J, Ambroisine L, et al. Heterogeneity and clinical significance of etv1 translocations in human prostate cancer. Br J Cancer. 2008;99:314–20.

    Article  PubMed  CAS  Google Scholar 

  77. Hermans KG, Bressers AA, van der Korput HA, et al. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res. 2008;68:3094–8.

    Article  PubMed  CAS  Google Scholar 

  78. Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med. 2010;16:793–8.

    Article  PubMed  CAS  Google Scholar 

  79. Wang XS, Shankar S, Dhanasekaran SM, et al. Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer Discov. 2011;1:35–43.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. Daphne Hessels reported no conflicts of interest relevant to this article.

Professor Jack Schalken reported no conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Schalken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hessels, D., Schalken, J.A. Recurrent Gene Fusions in Prostate Cancer: Their Clinical Implications and Uses. Curr Urol Rep 14, 214–222 (2013). https://doi.org/10.1007/s11934-013-0321-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-013-0321-1

Keywords

Navigation