Skip to main content

Advertisement

Log in

The Role of Claudin in Hypercalciuric Nephrolithiasis

  • Kidney Diseases (G Ciancio, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Calcium nephrolithiasis is a common condition. Family-based genetic linkage studies and genome-wide association studies (GWASs) have uncovered a run of important candidate genes involved in renal Ca++ disorders and kidney stone diseases. The susceptible genes include NKCC2, ROMK and ClCkb/Barttin that underlie renal salt excretion; claudin-14, -16 and -19 that underlie renal Ca++ excretion; and CaSR that provides a sensing mechanism for the kidney to regulate salt, water and Ca++ homeostasis. Biological and physiological analyses have revealed the cellular mechanism for transepithelial Ca++ transport in the kidney that depends on the concerted action of these gene products. Although the individual pathogenic weight of the susceptible genes in nephrolithiasis remains unclear, perturbation of their expression or function compromises the different steps within the integrated pathway for Ca++ reabsorption, providing a physiological basis for diagnosing and managing kidney stone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115:2598–608.

    Article  PubMed  CAS  Google Scholar 

  2. Hess B, Hasler-Strub U, Ackermann D, et al. Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol Dial Transplant. 1997;12:1362–8.

    Article  PubMed  CAS  Google Scholar 

  3. Thorleifsson G, Holm H, Edvardsson V, et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet. 2009;41:926–30.

    Article  PubMed  CAS  Google Scholar 

  4. Friedman PA. Renal calcium metabolism. In Seldin and Giebisch’s The Kidney – Physiology and Pathophysiology. 2008; volume 2; chapter 65; p1851-1890.

  5. Mensenkamp AR, Hoenderop JG, Bindels RJ. Recent advances in renal tubular calcium reabsorption. Curr Opin Nephrol Hypertens. 2006;15:524–9.

    Article  PubMed  CAS  Google Scholar 

  6. Liebman SE, Taylor JG, Bushinsky DA. Idiopathic hypercalciuria. Curr Rheumatol Rep. 2006;8:70–5.

    Article  PubMed  Google Scholar 

  7. Lamberg BA, Kuhlback B. Effect of chlorothiazide and hydrochlorothiazide on the excretion of calcium in urine. Scand J Clin Lab Invest. 1959;11:351–7.

    Article  PubMed  CAS  Google Scholar 

  8. Nijenhuis T, Vallon V, van der Kemp AW, et al. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005;115:1651–8.

    Article  PubMed  CAS  Google Scholar 

  9. Muto S, Hata M, Taniguchi J, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A. 2010;107:8011–6. This article reports the renal phenotypes of claudin-2 knockout mice and emphasizes the role of claudin-2 channel in paracellular Ca ++ reabsorption in the proximal tubule of the kidney.

    Article  PubMed  CAS  Google Scholar 

  10. Hou J, Goodenough DA. Claudin-16 and claudin-19 function in the thick ascending limb. Curr Opin Nephrol Hypertens. 2010;19:483–8. This article is a recent review of claudin physiology in the thick ascending limb of the kidney.

    Article  PubMed  CAS  Google Scholar 

  11. Hou J, Renigunta A, Gomes AS, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A. 2009;106:15350–5.

    Article  PubMed  CAS  Google Scholar 

  12. Hou J, Renigunta A, Konrad M, et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest. 2008;118:619–28.

    PubMed  CAS  Google Scholar 

  13. Hou J, Shan Q, Wang T, et al. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem. 2007;282:17114–22.

    Article  PubMed  CAS  Google Scholar 

  14. Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci. 2005;118:5109–18.

    Article  PubMed  CAS  Google Scholar 

  15. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375–412.

    Article  PubMed  CAS  Google Scholar 

  16. Miller F. Hemoglobin absorption by the cell of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960;8:689–718.

    Article  PubMed  CAS  Google Scholar 

  17. Furuse M, Hirase T, Itoh M, et al. Occludin - a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777–88.

    Article  PubMed  CAS  Google Scholar 

  18. Ebnet K, Suzuki A, Ohno S, et al. Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci. 2004;117:19–29.

    Article  PubMed  CAS  Google Scholar 

  19. Lal-Nag M, Morin PJ. The claudins. Genome Biol. 2009;10:235.1–7.

    Article  Google Scholar 

  20. Mineta K, Yamamoto Y, Yamazaki Y, et al. Predicted expansion of the claudin multigene family. FEBS Lett. 2011;585:606–12.

    Article  PubMed  CAS  Google Scholar 

  21. Krause G, Winkler L, Mueller SL. Structure and function of claudins. Biochim Biophys Acta. 2008;1778:631–45.

    Article  PubMed  CAS  Google Scholar 

  22. Colegio OR, Van Itallie CM, Rahner C, et al. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol. 2003;284:C1346–54.

    PubMed  CAS  Google Scholar 

  23. Alexandre MD, Jeansonne BG, Renegar RH, et al. The first extracellular domain of claudin-7 affects paracellular Cl permeability. Biochem Biophys Res Commun. 2007;357:87–91.

    Article  PubMed  CAS  Google Scholar 

  24. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403–29.

    Article  PubMed  Google Scholar 

  25. Cukierman L, Meertens L, Bertaux C, et al. Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts. J Virol. 2009;83:5477–84.

    Article  PubMed  CAS  Google Scholar 

  26. Fujita K, Katahira J, Horiguchi Y, et al. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett. 2000;476:258–61.

    Article  PubMed  CAS  Google Scholar 

  27. Hamazaki Y, Itoh M, Sasaki H, et al. Multi-PDZ-containing protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule (JAM). J Biol Chem. 2001;277:455–61.

    Article  PubMed  Google Scholar 

  28. Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999;147:1351–63.

    Article  PubMed  CAS  Google Scholar 

  29. Van Itallie C, Rahner C, Anderson JM. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest. 2001;107:1319–27.

    Article  PubMed  Google Scholar 

  30. Colegio OR, Van Itallie CM, McCrea HJ, et al. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol. 2002;283:C142–7.

    PubMed  CAS  Google Scholar 

  31. Ben-Yosef T, Belyantseva IA, Saunders TL, et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet. 2003;12:2049–61.

    Article  PubMed  CAS  Google Scholar 

  32. Yu AS, Enck AH, Lencer WI, et al. Claudin-8 expression in MDCK cells augments the paracellular barrier to cation permeation. J Biol Chem. 2003;278:17350–9.

    Article  PubMed  CAS  Google Scholar 

  33. Wen H, Watry DD, Marcondes MC, et al. Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol. 2004;24:8408–17.

    Article  PubMed  CAS  Google Scholar 

  34. Furuse M, Furuse K, Sasaki H, et al. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 2001;153:263–72.

    Article  PubMed  CAS  Google Scholar 

  35. Van Itallie CM, Fanning AS, Anderson JM. Reversal of charge selectivity in cation or anion selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol. 2003;285:F1078–84.

    PubMed  Google Scholar 

  36. Tang VW, Goodenough DA. Paracellular ion channel at the tight junction. Biophys J. 2003;84:1660–73.

    Article  PubMed  CAS  Google Scholar 

  37. Tsukita S, Furuse M. Pores in the wall. Claudins constitute tight junction strands containing aqueous pores. J Cell Biol. 2000;149:13–6.

    Article  PubMed  CAS  Google Scholar 

  38. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001;281:C388–97.

    PubMed  CAS  Google Scholar 

  39. Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298–305.

    Article  PubMed  Google Scholar 

  40. Yu AS, Cheng MH, Angelow S, et al. Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol. 2009;133(1):111–27.

    Article  PubMed  CAS  Google Scholar 

  41. Simon DB, Karet FE, Hamdan, et al. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.

    Article  PubMed  CAS  Google Scholar 

  42. Simon DB, Karet FE, Rodriguez-Soriano J, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14:152–6.

    Article  PubMed  CAS  Google Scholar 

  43. Greger R. Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev. 1985;65:760–97.

    PubMed  CAS  Google Scholar 

  44. Seyberth H, Soergel M, Koeckerling A. Hypokalaemic tubular disorders: the hyperprostaglandin E syndrome and Gitelman-Bartter syndrome. In: Davison A, Cameron J, Grunfeld J, Kerr D, Ritz E, Winearls C, editors. Oxford textbook of clinical nephrology. Oxford: Oxford University Press; 1998. p. 1085–93.

    Google Scholar 

  45. Simon DB, Bindra RS, Mansfield TA, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17:171–8.

    Article  PubMed  CAS  Google Scholar 

  46. Birkenhager R, Otto E, Schurmann MJ, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29:310–4.

    Article  PubMed  CAS  Google Scholar 

  47. Estevez R, Boettger T, Stein V, et al. Barttin is a Cl- channel betasubunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature. 2001;414:558–61.

    Article  PubMed  CAS  Google Scholar 

  48. Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol. 2010;298:F485–99. This article is a recent review of the Ca ++ sensing receptor (CaSR) in the kidney.

    Article  PubMed  CAS  Google Scholar 

  49. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335:1115–22.

    Article  PubMed  CAS  Google Scholar 

  50. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994;8:303–7.

    Article  PubMed  CAS  Google Scholar 

  51. Watanabe S, Fukumoto S, Chang H, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002;360:692–4.

    Article  PubMed  CAS  Google Scholar 

  52. Vargas-Poussou R, Huang C, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13:2259–66.

    Article  PubMed  CAS  Google Scholar 

  53. Wang W, Lu M, Balazy M, et al. Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am J Physiol. 1997;273:F421–9.

    PubMed  CAS  Google Scholar 

  54. Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285:103–6.

    Article  PubMed  CAS  Google Scholar 

  55. Konrad M, Schaller A, Seelow D, et al. Mutations in the tight junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79:949–57.

    Article  PubMed  CAS  Google Scholar 

  56. Praga M, Vara J, Gonzalez-Parra, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995;47:1419–25.

    Article  PubMed  CAS  Google Scholar 

  57. Weber S, Schneider L, Peters M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12:1872–81.

    PubMed  CAS  Google Scholar 

  58. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.

    Article  PubMed  CAS  Google Scholar 

  59. Wilcox ER, Burton QL, Naz S, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell. 2001;104:165–72.

    Article  PubMed  CAS  Google Scholar 

  60. Ben-Yosef T, Belyantseva IA, Saunders TL, et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet. 2003;12:2049–61.

    Article  PubMed  CAS  Google Scholar 

  61. Elkouby-Naor L, Abassi Z, Lagziel A, et al. Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res. 2008;333:427–38.

    Article  PubMed  CAS  Google Scholar 

  62. Kiuchi-Saishin Y, Gotoh S, Furuse M, et al. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. 2002;13:875–86.

    PubMed  CAS  Google Scholar 

  63. Gong Y, Renigunta V, Himmerkus N, et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012;31(8):1999–2012. This article reveals the renal role of claudin-14 in Ca ++ metabolism and uncovers a novel signaling pathway for CaSR that utilizes the microRNA molecules.

    Article  PubMed  CAS  Google Scholar 

  64. Loupy A, Ramakrishnan SK, Wootla B, et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest. 2012;122(9):3355–67. This article reveals the renal function of CaSR independent of its role in the parathyroid glands.

    Article  PubMed  CAS  Google Scholar 

  65. Parks JH, Coward M, Coe FL. Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int. 1997;51:894–900.

    Article  PubMed  CAS  Google Scholar 

  66. Evan AP, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111:607–16.

    PubMed  CAS  Google Scholar 

  67. Kuo RL, et al. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int. 2003;64:2150–4.

    Article  PubMed  Google Scholar 

  68. Breiderhoff T, Himmerkus N, Stuiver M, et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A. 2012;109(35):14241–6. This article reports the renal phenotypes of claudin-10 knockout mice and reveals unexpected nephrocalcinosis accompanied by tubular hyperabsorption of Ca ++.

    Article  PubMed  CAS  Google Scholar 

  69. Vezzoli G, Terranegra A, Arcidiacono T, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 2007;71:1155–62.

    Article  PubMed  CAS  Google Scholar 

  70. Corbetta S, Eller-Vainicher C, Filopanti M, et al. R990G polymorphism of the calcium-sensing receptor and renal calcium excretion in patients with primary hyperparathyroidism. Eur J Endocrinol. 2006;155:687–92.

    Article  PubMed  CAS  Google Scholar 

  71. Vezzoli G, Terranegra A, Arcidiacono T, et al. Calcium kidney stones are associated with a haplotype of the calcium-sensing receptor gene regulatory region. Nephrol Dial Transplant. 2010;25:2245–52.

    Article  PubMed  CAS  Google Scholar 

  72. Aloia A, Terranegra, A, Vezzoli G et al. Effects of the calcium sensing receptor promoter region polymorphisms in kidney stone disease. ASN 2011; [FR-PO1182].

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grants RO1DK084059 and P30 DK079333, and American Heart Association Grant 0930050N.

Disclosure

The author reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghui Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, J. The Role of Claudin in Hypercalciuric Nephrolithiasis. Curr Urol Rep 14, 5–12 (2013). https://doi.org/10.1007/s11934-012-0289-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-012-0289-2

Keywords

Navigation