Skip to main content

Advertisement

Log in

Urothelial effects of oral agents for overactive bladder

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The cholinergic system of the bladder includes muscarinic receptors distributed to detrusor myocytes and structures within mucosa including bladder afferent (sensory) nerves. The receptors have been shown to be involved in afferent signaling from the bladder, but it has not been established to what extent effects on this mucosal signaling pathway contribute to the therapeutic efficacy of the clinically used antimuscarinics. Mucosa can be influenced by antimuscarinics via the bloodstream. However, some antimuscarinics and their active metabolites are excreted in urine in amounts that may affect the mucosal muscarinic receptors from the luminal side. This has not yet been demonstrated to imply superior clinical efficacy. Nevertheless, mucosal afferent signaling pathways are therapeutically interesting targets that should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Andersson KE: Antimuscarinics for treatment of overactive bladder. Lancet Neurol 2004, 3:46–53.

    Article  PubMed  CAS  Google Scholar 

  2. Andersson KE: Bladder activation: afferent mechanisms. Urology 2002, 59:43–50.

    Article  PubMed  Google Scholar 

  3. Birder LA, de Groat WC: Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat Clin Pract Urol 2007, 4:46–54.

    Article  PubMed  CAS  Google Scholar 

  4. de Groat WC: The urothelium in overactive bladder: passive bystander or active participant? Urology 2004, 64:7–11.

    Article  PubMed  Google Scholar 

  5. Lips KS, Wunsch J, Zarghooni S, et al.: Acetylcholine and molecular components of its synthesis and release machinery in the urothelium. Eur Urol 2007, 51:1042–1053.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida M, Inadome A, Maeda Y, et al.: Non-neuronal cholinergic system in human bladder urothelium. Urology 2006, 67:425–430.

    Article  PubMed  Google Scholar 

  7. Hanna-Mitchell AT, Beckel JM, Barbadora S, et al.: Nonneuronal acetylcholine and urinary bladder urothelium. Life Sci 2007, 80:2298–2302.

    Article  PubMed  CAS  Google Scholar 

  8. Chess-Williams R: Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol 2002, 22:133–145.

    Article  PubMed  CAS  Google Scholar 

  9. Mansfield KJ, Liu L, Mitchelson FJ, et al.: Muscarinic receptor subtypes in human bladder detrusor and mucosa, studied by radioligand binding and quantitative competitive RT-PCR: changes in ageing. Br J Pharmacol 2005, 144:1089–1099.

    Article  PubMed  CAS  Google Scholar 

  10. Mukerji G, Yiangou Y, Grogono J, et al.: Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol 2006, 176:367–373.

    Article  PubMed  CAS  Google Scholar 

  11. Tyagi S, Tyagi P, Van-le S, et al.: Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol 2006, 176:1673–1678.

    Article  PubMed  CAS  Google Scholar 

  12. Mansfield KJ, Liu L, Moore KH, et al.: Molecular characterization of M2 and M3 muscarinic receptor expression in bladder from women with refractory idiopathic detrusor overactivity. BJU Int 2007, 99:1433–1438.

    Article  PubMed  CAS  Google Scholar 

  13. Bschleipfer T, Schukowski K, Weidner W, et al.: Expression and distribution of cholinergic receptors in the human urothelium. Life Sci 2007, 80:2303–2307.

    Article  PubMed  CAS  Google Scholar 

  14. Yokoyama O, Yusup A, Miwa Y, et al.: Effects of tolterodine on an overactive bladder depend on suppression of C-fiber bladder afferent activity in rats. J Urol 2005, 174:2032–2036.

    Article  PubMed  CAS  Google Scholar 

  15. Hedlund P, Streng T, Lee T, Andersson KE: Effects of tolterodine on afferent neurotransmission in normal and resiniferatoxin treated conscious rats. J Urol 2007, 178:326–331.

    Article  PubMed  CAS  Google Scholar 

  16. De Laet K, De Wachter S, Wyndaele JJ: Systemic oxybutynin decreases afferent activity of the pelvic nerve of the rat: new insights into the working mechanism of antimuscarinics. Neurourol Urodyn 2006, 25:156–161.

    Article  PubMed  CAS  Google Scholar 

  17. Iijima K, De Wachter S, Wyndaele JJ: Effects of the M3 receptor selective muscarinic antagonist darifenacin on bladder afferent activity of the rat pelvic nerve. Eur Urol 2007, 52:842–847.

    Article  PubMed  Google Scholar 

  18. Boy S, Schurch B, Mehnert U, et al.: The effects of tolterodine on bladder-filling sensations and perception thresholds to intravesical electrical stimulation: method and initial results. BJU Int 2007, 100:574–578.

    Article  PubMed  CAS  Google Scholar 

  19. Finney SM, Andersson KE, Gillespie JI, Stewart LH: Antimuscarinic drugs in detrusor overactivity and the overactive bladder syndrome: motor or sensory actions? BJU Int 2006, 98:503–507.

    Article  PubMed  CAS  Google Scholar 

  20. Kim Y, Yoshimura N, Masuda H, et al.: Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder-afferent pathways. Urology 2005, 65:238–242.

    Article  PubMed  Google Scholar 

  21. Walter P, Grosse J, Bihr AM, et al.: Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction: a pilot study. Neurourol Urodyn 1999, 18:447–453.

    Article  PubMed  CAS  Google Scholar 

  22. Frohlich G, Burmeister S, Wiedemann A, Bulitta M: Intravesical instillation of trospium chloride, oxybutynin and verapamil for relaxation of the bladder detrusor muscle. A placebo controlled, randomized clinical test [in German]. Arzneimittelforschung 1998, 48:486–491.

    PubMed  CAS  Google Scholar 

  23. Fovaeus M, Fujiwara M, Hogestatt ED, et al.: A nonnitrergic smooth muscle relaxant factor released from the contracting rat urinary bladder. Acta Physiol Scand 1998, 162:115–116.

    Article  PubMed  CAS  Google Scholar 

  24. Hawthorn MH, Chapple CR, Cock M, Chess-Williams R: Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. Br J Pharmacol 2000, 129:416–419.

    Article  PubMed  CAS  Google Scholar 

  25. Kim Y, Yoshimura N, Masuda H, et al.: Intravesical instillation of human urine after oral administration of trospium, tolterodine and oxybutynin in a rat model of detrusor overactivity. BJU Int 2006, 97:400–403.

    Article  PubMed  CAS  Google Scholar 

  26. Chuang YC, Thomas CA, Tyagi S, et al.: Human urine with solifenacin intake but not tolterodine or darifenacin intake blocks detrusor overactivity. Int Urogynecol J Pelvic Floor Dysfunct 2008 (in press).

  27. Michel MC, Yanagihara T, Minematsu T, et al.: Disposition and metabolism of solifenacin in humans. Proceedings of the BPS Clinical Pharmacology Section. December 14–16, 2004. Br J Clin Pharmacol 2005, 59:647.

    Google Scholar 

  28. Michel MC, Hegde SS: Treatment of the overactive bladder syndrome with muscarinic receptor antagonists: a matter of metabolites? Naunyn Schmiedebergs Arch Pharmacol 2006, 374:79–85.

    Article  PubMed  CAS  Google Scholar 

  29. Doroshyenko O, Jetter A, Odenthal KP, Fuhr U: Clinical pharmacokinetics of trospium chloride. Clin Pharmacokinet 2005, 44:701–720.

    Article  PubMed  CAS  Google Scholar 

  30. Andersson SH, Lindgren A, Postlind H: Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs. Drug Metab Dispos 1998, 26:528–535.

    PubMed  CAS  Google Scholar 

  31. Nilvebrant L, Gillberg PG, Sparf B: Antimuscarinic potency and bladder selectivity of PNU-200577, a major metabolite of tolterodine. Pharmacol Toxicol 1997, 81:169–172.

    PubMed  CAS  Google Scholar 

  32. Brynne N, Stahl MM, Hallen B, et al.: Pharmacokinetics and pharmacodynamics of tolterodine in man: a new drug for the treatment of urinary bladder overactivity. Int J Clin Pharmacol Ther 1997, 35:287–295.

    PubMed  CAS  Google Scholar 

  33. Haustein KO, Huller G: On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 1988, 13:81–90.

    PubMed  CAS  Google Scholar 

  34. Siepmann M, Nokhodian A, Thummler D, Kirch W: Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 1998, 54:767–771.

    Article  PubMed  CAS  Google Scholar 

  35. Wuest M, Braeter M, Schoeberl C, Ravens U: Juvenile pig detrusor: effects of propiverine and three of its metabolites. Eur J Pharmacol 2005, 524:145–148.

    Article  PubMed  CAS  Google Scholar 

  36. Michel MC: Fesoterodine: a novel muscarinic receptor antagonist for the treatment of the overactive bladder syndrome. Expert Opin Pharmacother 2008, 9:1787–1796.

    Article  PubMed  CAS  Google Scholar 

  37. Wuest M, Hecht J, Christ T, et al.: Pharmacodynamics of propiverine and three of its main metabolites on detrusor contraction. Br J Pharmacol 2005, 145:608–619.

    Article  PubMed  CAS  Google Scholar 

  38. Wuest M, Weiss A, Waelbroeck M, et al.: Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn Schmiedebergs Arch Pharmacol 2006, 374:87–97.

    Article  PubMed  CAS  Google Scholar 

  39. Douchamps J, Derenne F, Stockis A, et al.: The pharmacokinetics of oxybutynin in man. Eur J Clin Pharmacol 1988, 35:515–520.

    Article  PubMed  CAS  Google Scholar 

  40. Hughes KM, Lang JC, Lazare R, et al.: Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers. Xenobiotica 1992, 22:859–869.

    PubMed  CAS  Google Scholar 

  41. Lukkari E, Taavitsainen P, Juhakoski A, Pelkonen O: Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol 1998, 82:161–166.

    Article  PubMed  CAS  Google Scholar 

  42. Yaich M, Popon M, Medard Y, Aigrain EJ: In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-desethyloxybutynin in humans. Pharmacogenetics 1998, 8:449–451.

    Article  PubMed  CAS  Google Scholar 

  43. Skerjanec A: The clinical pharmacokinetics of darifenacin. Clin Pharmacokinet 2006, 45:325–350.

    Article  PubMed  CAS  Google Scholar 

  44. Beaumont KC, Cussans NJ, Nichols DJ, Smith DA: Pharmacokinetics and metabolism of darifenacin in the mouse, rat, dog and man. Xenobiotica 1998, 28:63–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erik Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, KE., Fullhase, C. & Soler, R. Urothelial effects of oral agents for overactive bladder. Curr Urol Rep 9, 459–464 (2008). https://doi.org/10.1007/s11934-008-0079-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-008-0079-z

Keywords

Navigation