Skip to main content

Advertisement

Log in

Classical pathology versus molecular pathology in renal cell carcinoma

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) has been characterized based on histology, stage, and grading to predict behavior and guide therapy; however, RCC is still unpredictable, with poor prognosis in metastatic disease. The classification of RCC has been revised to account for molecular characteristics, and there has been an increasing understanding of the hereditary forms of RCC. This has led to further elucidation of pathways in the development of RCC including the hypoxia-inducible pathway and angiogenesis. Many other promising molecular modalities are in development, including gene expression profiling, nuclear parameters, and proliferation/apoptotic markers. This article discusses the current understanding of the classical pathologic features of RCC and highlights recent developments in the cellular and molecular characterization of RCC, which aim to improve the classification, prognostication, and treatment of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lohse CM, Cheville JC: A review of prognostic pathologic features and algorithms for patients treated surgically for renal cell carcinoma. Clin Lab Med 2005, 25:433–464.

    Article  PubMed  Google Scholar 

  2. Amin MB, Amin MB, Tamboli P, et al.: Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am J Surg Pathol 2002, 26:281–291.

    Article  PubMed  Google Scholar 

  3. Patard JJ, Leray E, Rioux-Leclercq N, et al.: Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol 2005, 23:2763–2771.

    Article  PubMed  Google Scholar 

  4. Eble JN, Sauter G, Epstein JI, Sesterhenn IA, eds: World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of the Urinary System and Male Genital Organs. Lyon: IARC Press; 2004.

    Google Scholar 

  5. Storkel S, Eble JN, Adlakha K, et al.: Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 1997, 80:987–989.

    Article  PubMed  CAS  Google Scholar 

  6. Delahunt B, Eble JN: Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol 1997, 10:S37–S44.

    Google Scholar 

  7. Cindolo L, de la Taille A, Schips L, et al.: Chromophobe renal cell carcinoma: comprehensive analysis of 104 cases from multicenter European database. Urology 2005, 65:681–686.

    Article  PubMed  Google Scholar 

  8. Lam JS, Shvarts O, Said JW, et al.: Clinicopathologic and molecular correlations of necrosis in the primary tumor of patients with renal cell carcinoma. Cancer 2005, 103:2517–2525.

    Article  PubMed  CAS  Google Scholar 

  9. Skinner DG, Colvin RB, Vermillion CD, et al.: Diagnosis and management of renal cell carcinoma. A clinical and pathologic study of 309 cases. Cancer 1971, 28:1165–1177.

    Article  PubMed  CAS  Google Scholar 

  10. Fuhrman SA, Lasky LC, Limas C: Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 1982, 6:655–663.

    Article  PubMed  CAS  Google Scholar 

  11. Brunelli M, Eble JN, Zhang S, et al.: Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol 2005, 18:161–169.

    Article  PubMed  CAS  Google Scholar 

  12. Cossu-Rocca P, Eble JN, Delahunt B, et al.: Renal mucinous tubular and spindle carcinoma lacks the gains of chromosomes 7 and 17 and losses of chromosome Y that are prevalent in papillary renal cell carcinoma. Mod Pathol 2006, 19:488–493.

    Article  PubMed  CAS  Google Scholar 

  13. Presti JC Jr, Wilhelm M, Reuter V, et al.: Allelic loss on chromosomes 8 and 9 correlates with clinical outcome in locally advanced clear cell carcinoma of the kidney. J Urol 2002, 167:1464–1468.

    Article  PubMed  CAS  Google Scholar 

  14. Schraml P, Muller D, Bednar R, et al.: Allelic loss at the D9S171 locus on chromosome 9p13 is associated with progression of papillary renal cell carcinoma. J Pathol 2000, 190:457–461.

    Article  PubMed  CAS  Google Scholar 

  15. Linehan WM, Zbar B: Focus on kidney cancer. Cancer Cell 2004, 6:223–228.

    Article  PubMed  CAS  Google Scholar 

  16. Nickerson ML, Warren MB, Toro JR, et al.: Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2002, 2:157–164.

    Article  PubMed  CAS  Google Scholar 

  17. Furge KA, Lucas KA, Takahashi M, et al.: Robust classification of renal cell carcinoma based on gene expression data and predicted cytogenetic profiles. Cancer Res 2004, 64:4117–4121.

    Article  PubMed  CAS  Google Scholar 

  18. Yang XJ, Sugimura J, Schafernak KT, et al.: Classification of renal neoplasms based on molecular signatures. J Urol 2006, 175:2302–2306.

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi M, Rhodes DR, Furge KA, et al.: Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A 2001, 98:9754–9759.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao H, Ljungberg B, Grankvist K, et al.: Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med 2006, 3:e13.

    Article  PubMed  CAS  Google Scholar 

  21. Velickovic M, Delahunt B, Storkel S, et al.: VHL and FHIT locus loss of heterozygosity is common in all renal cancer morphotypes but differs in pattern and prognostic significance. Cancer Res 2001, 61:4815–4819.

    PubMed  CAS  Google Scholar 

  22. Ashida S, Furihata M, Tanimura M, et al.: Molecular detection of von Hippel-Lindau gene mutations in urine and lymph node samples in patients with renal cell carcinoma: potential biomarkers for early diagnosis and postoperative metastatic status. J Urol 2003, 169:2089–2093.

    Article  PubMed  CAS  Google Scholar 

  23. Ashida S, Okuda H, Chikazawa M, et al.: Detection of circulating cancer cells with von hippel-lindau gene mutation in peripheral blood of patients with renal cell carcinoma. Clin Cancer Res 2000, 6:3817–3822.

    PubMed  CAS  Google Scholar 

  24. Schraml P, Struckmann K, Hatz F, et al.: VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 2002, 196:186–193.

    Article  PubMed  CAS  Google Scholar 

  25. Barnabas N, Amin MB, Pindolia K, et al.: Mutations in the von Hippel-Lindau (VHL) gene refine differential diagnostic criteria in renal cell carcinoma. J Surg Oncol 2002, 80:52–60.

    Article  PubMed  CAS  Google Scholar 

  26. Martinez A, Fullwood P, Kondo K, et al.: Role of chromosome 3p12–p21 tumour suppressor genes in clear cell renal cell carcinoma: analysis of VHL dependent and VHL independent pathways of tumorigenesis. Mol Pathol 2000, 53:137–144.

    Article  PubMed  CAS  Google Scholar 

  27. Yao M, Yoshida M, Kishida T, et al.: VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 2002, 94:1569–1575.

    PubMed  CAS  Google Scholar 

  28. Bui MH, Seligson D, Han KR, et al.: Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 2003, 9:802–811.

    PubMed  CAS  Google Scholar 

  29. Uemura H, Nakagawa Y, Yoshida K, et al.: MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br J Cancer 1999, 81:741–746.

    Article  PubMed  CAS  Google Scholar 

  30. Atkins M, Regan M, McDermott D, et al.: Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res 2005, 11:3714–3721.

    Article  PubMed  CAS  Google Scholar 

  31. Nativ O, Sabo E, Reiss A, et al.: Clinical significance of tumor angiogenesis in patients with localized renal cell carcinoma. Urology 1998, 51:693–696.

    Article  PubMed  CAS  Google Scholar 

  32. Slaton JW, Inoue K, Perrotte P, et al.: Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 2001, 158:735–743.

    PubMed  CAS  Google Scholar 

  33. Imao T, Egawa M, Takashima H, et al.: Inverse correlation of microvessel density with metastasis and prognosis in renal cell carcinoma. Int J Urol 2004, 11:948–953.

    Article  PubMed  Google Scholar 

  34. Jacobsen J, Grankvist K, Rasmuson T, et al.: Different isoform patterns for vascular endothelial growth factor between clear cell and papillary renal cell carcinoma. BJU Int 2006, 97:1102–1108.

    Article  PubMed  CAS  Google Scholar 

  35. Jacobsen J, Rasmuson T, Grankvist K, et al.: Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 2000, 163:343–347.

    Article  PubMed  CAS  Google Scholar 

  36. Chang SG, Jeon SH, Lee SJ, et al.: Clinical significance of urinary vascular endothelial growth factor and microvessel density in patients with renal cell carcinoma. Urology 2001, 58:904–908.

    Article  PubMed  CAS  Google Scholar 

  37. Drevs J, Hofmann I, Hugenschmidt H, et al.: Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 2000, 60:4819–4824.

    PubMed  CAS  Google Scholar 

  38. Motzer RJ, Michaelson MD, Redman BG, et al.: Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006, 24:16–24.

    Article  PubMed  CAS  Google Scholar 

  39. Ozer E, Yorukoglu K, Sagol O, et al.: Prognostic significance of nuclear morphometry in renal cell carcinoma. BJU Int 2002, 90:20–25.

    Article  PubMed  CAS  Google Scholar 

  40. Carducci MA, Piantadosi S, Pound CR, et al.: Nuclear morphometry adds significant prognostic information to stage and grade for renal cell carcinoma. Urology 1999, 53:44–49.

    Article  PubMed  CAS  Google Scholar 

  41. Kirkali Z, Yorukoglu K, Ozkara E, et al.: Proliferative activity, angiogenesis and nuclear morphometry in renal cell carcinoma. Int J Urol 2001, 8:697–703.

    Article  PubMed  CAS  Google Scholar 

  42. Yasunaga Y, Shin M, Miki T, et al.: Prognostic factors of renal cell carcinoma: a multivariate analysis. J Surg Oncol 1998, 68:11–18.

    Article  PubMed  CAS  Google Scholar 

  43. Tannapfel A, Hahn HA, Katalinic A, et al.: Prognostic value of ploidy and proliferation markers in renal cell carcinoma. Cancer 1996, 77:164–171.

    Article  PubMed  CAS  Google Scholar 

  44. Francois C, Moreno C, Teitelbaum J, et al.: Improving accuracy in the grading of renal cell carcinoma by combining the quantitative description of chromatin pattern with the quantitative determination of cell kinetic parameters. Cytometry 2000, 42:18–26.

    Article  PubMed  CAS  Google Scholar 

  45. Bui MH, Visapaa H, Seligson D, et al.: Prognostic value of carbonic anhydrase IX and KI67 as predictors of survival for renal clear cell carcinoma. J Urol 2004, 171(6 Pt 1):2461–2466.

    Article  PubMed  Google Scholar 

  46. Cheville JC, Zincke H, Lohse CM, et al.: pT1 clear cell renal cell carcinoma: a study of the association between MIB-1 proliferative activity and pathologic features and cancer specific survival. Cancer 2002, 94:2180–2184.

    Article  PubMed  Google Scholar 

  47. Mahotka C, Krieg T, Krieg A, et al.: Distinct in vivo expression patterns of survivin splice variants in renal cell carcinomas. Int J Cancer 2002, 100:30–36.

    Article  PubMed  CAS  Google Scholar 

  48. Parker AS, Kosari F, Lohse CM, et al.: High expression levels of survivin protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer 2006, 107:37–45.

    Article  PubMed  CAS  Google Scholar 

  49. Miyake H, Hara S, Arakawa S, et al.: Over expression of clusterin is an independent prognostic factor for nonpapillary renal cell carcinoma. J Urol 2002, 167(2 Pt 1):703–706.

    PubMed  CAS  Google Scholar 

  50. Miyake H, Hara S, Zellweger T, et al.: Acquisition of resistance to Fas-mediated apoptosis by overexpression of clusterin in human an renal-cell carcinoma cells. Mol Urol 2001, 5:105–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Soung Sullivan MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, P.S., Rao, J., Cheng, L. et al. Classical pathology versus molecular pathology in renal cell carcinoma. Curr Urol Rep 8, 5–11 (2007). https://doi.org/10.1007/s11934-007-0015-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-007-0015-7

Keywords

Navigation