Skip to main content

Advertisement

Log in

Immune gene therapy in urology

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Effective treatments are needed urgently for metastatic disease in bladder, prostate, and renal cell cancer. In the past few years, several new approaches for treating these conditions have been proposed, including gene therapy. A number of different strategies have been developed to accomplish urologic cancer gene therapy. Genetic immunomodulation strategies attempt to activate immune defense mechanisms against tumor cells by transfer of tumor antigens, cytokine genes, or strongly immunogenic cell surface molecules. In this review, we illustrate the recent developments in immune gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pettit SJ, Seymour K, O’Flaherty E, Kirby JA: Immune selection in neoplasia: towards a microevolutionary model of cancer development. Br J Cancer 2000, 82:1900–1906.

    Article  PubMed  CAS  Google Scholar 

  2. Radoja S, Frey AB: Cancer-induced defective cytotoxic T lymphocyte effector function: another mechanism how antigenic tumors escape immune-mediated killing. Mol Med 2000, 6:465–479.

    PubMed  CAS  Google Scholar 

  3. Tzai TS, Lin CI, Shiau AL, Wu CL: Antisense oligonucleotide specific for transforming growth factor-beta 1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer. Anticancer Res 1998, 18:1585–1590.

    PubMed  CAS  Google Scholar 

  4. Gately MK, Desai BB, Wolitzky AG, et al.: Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12. J Immunol 1991, 147:874–882.

    PubMed  CAS  Google Scholar 

  5. Gately MK, Wolitzky AG, Quinn PM, Chizzonite R: Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 1992, 143:127–142.

    Article  PubMed  CAS  Google Scholar 

  6. Mier JW, Atkins MB: Mechanisms of action and toxicity of immunotherapy with cytokines. Curr Opin Oncol 1993, 5:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  7. Gilboa E: How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 1999, 48:382–385.

    Article  PubMed  CAS  Google Scholar 

  8. Siemens DR, Austin JC, Hedican SP, et al.: Viral vector delivery in solid-state vehicles: gene expression in a murine prostate cancer model. J Natl Cancer Inst 2000, 92:403–412. Comparing different vehicles for their ability to deliver the canarypox virus ALVAC to cells, a gelatin sponge matrix was shown to be most effective and to enhance reporter gene expression significantly in different tumor models.

    Article  PubMed  CAS  Google Scholar 

  9. Bergelson JM, Cunningham JA, Droguett G, et al.: Isolation of a common receptor for Coxsackie B viruses and adenovirus 2 and 5. Science 1997, 275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  10. Horiguchi Y, Larchian WA, Kaplinsky R, et al.: Intravesical liposome-mediated interleukin-2 gene therapy in orthotopic murine bladder cancer model. Gene Therapy 2000, 7:844–851.

    Article  PubMed  CAS  Google Scholar 

  11. Larchian WA, Horihuchi Y, Nair SK, et al.: Effectiveness of combined interleukin 2 and B7.1 vaccination strategy is dependent on the sequence and order: a liposome mediated gene therapy treatment for bladder cancer. Clin Cancer Res 2000, 6:2913–2920.

    PubMed  CAS  Google Scholar 

  12. Yamanaka K, Hara I, Nagai H, et al.: Synergistic antitumor effects of interleukin-12 gene transfer and systemic administration of interleukin-18 in a mouse bladder cancer model. Cancer Immunol Immunother 1999, 48:297–302.

    Article  PubMed  CAS  Google Scholar 

  13. Milella M, Jacobelli J, Cavallo F, et al.: Interleukin-2 gene transfer into human transitional cell carcinoma of the urinary bladder. Br J Cancer 1999, 79:770–779.

    Article  PubMed  CAS  Google Scholar 

  14. Nasu Y, Bangma CH, Hull GW, et al.: Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Therapy 1999, 6:338–349. The efficacy of a single injection of a recombinant adenovirus expressing murine IL-12 directly into orthotopic mouse prostate carcinomas was investigated. This study shows that antitumoral effects appear to be based, to a large extent, on the activation of nitric oxide synthase in macrophages, whereas the early cytolytic activity of natural killer cells is largely responsible for antimetastatic effects.

    Article  PubMed  CAS  Google Scholar 

  15. Soiffer R, Lynch T, Mihm M, et al.: Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci 1998, 95:13141–13146.

    Article  PubMed  CAS  Google Scholar 

  16. Simons JW, Jaffee EM, Weber CE, et al.: Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 1997, 57:1537–1546.

    PubMed  CAS  Google Scholar 

  17. Hung K, Hayashi R, Lafond-Walker A, et al.: The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998, 188:2357–2368. Vaccination with irradiated tumor cells transduced to secrete GM-CSF leads to simultaneous induction of TH1 and TH2 responses.

    Article  PubMed  CAS  Google Scholar 

  18. Chan AD, Morton DL: Active immunotherapy with allogeneic tumor cell vaccines: present status. Semin Oncol 1998, 25:611–622.

    PubMed  CAS  Google Scholar 

  19. Simons JW, Mikhak B, Chang JF, et al.: Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colonystimulating factor using ex vivo gene transfer. Cancer Res 1999, 59:5160–5168.

    PubMed  CAS  Google Scholar 

  20. Scott-Taylor TH, Pettengell R, Clarke I, et al.: Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 2000, 1500:265–279.

    PubMed  CAS  Google Scholar 

  21. Kugler A, Stuhler G, Walden P, et al.: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med 2000, 6:332–336. Presentation of clinical data from patients with RCC treated with dendritic cell-tumor cell fusions. This work was heavily criticized thereafter for multiple inconsistencies.

    Article  PubMed  CAS  Google Scholar 

  22. Heiser A, Dahm P, Yancey D, et al.: Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 2000, 164:5508–5514. Prostate-specific antigen mRNA-transfected dendritic cells were shown to be capable of stimulating primary CTL responses against PSA in vitro. Further studies imply that autoimmune toxicity, as well as natural tolerance to PSA, does not represent a barrier to this approach.

    PubMed  CAS  Google Scholar 

  23. Meidenbauer N, Harris DT, Spitler LE, et al.: Generation of PSA-reactive effector cells after vaccination with a PSAbased vaccine in patients with prostate cancer. Prostate 2000, 43:88–100.

    Article  PubMed  CAS  Google Scholar 

  24. Riegman PH, Vlietstra RJ, van der Korput JA, et al.: The promoter of the prostate-specific antigen gene contains functional androgen responsive element. Mol Endocrinol 1991, 5:1921–1930.

    Article  PubMed  CAS  Google Scholar 

  25. Latham JP, Searle PF, Mautner V, James ND: Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: construction and testing of a tissue-specific adenovirus vector. Cancer Res 2000, 60:334–341.

    PubMed  CAS  Google Scholar 

  26. Lee SE, Jin RJ, Lee SG, et al.: Development of a new plasmid vector with PSA-promoter and enhancer expressing tissue-specificity in prostate carcinoma cell lines. Anticancer Res 2000, 20:417–422.

    PubMed  CAS  Google Scholar 

  27. Lu Y, Carraher J, Zhang Y, et al.: Delivery of adenoviral vectors to the prostate for gene therapy. Cancer Gene Ther 1999, 6:64–72.

    Article  PubMed  CAS  Google Scholar 

  28. Dannull J, Patel B, Pang S, et al.: Tissue specific expression of a prostate-specific antigen promotor/enhancer in an adenoviral vector used in a human prostate cancer SCID mouse model [abstract #484]. J Urol 1999, 161:127.

    Article  Google Scholar 

  29. Nouri AM, Symes MO: Relevance of the immune system in human urological malignancies: prospective for future clinical treatments. Urology 1998, 51(suppl 5A):41–49.

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt-Wolf IG, Finke S, Trojaneck B, et al.: Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer 1999, 81:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  31. Rini BI, Selk LM, Vogelzang NJ: Phase I study of direct intralesional gene transfer of HLA-B7 into metastatic renal carcinoma lesions. Clin Cancer Res 1999, 5:2766–2772.

    PubMed  CAS  Google Scholar 

  32. Mendiratta SK, Quezada A, Matar M, et al.: Intratumoral delivery of IL-12 gene by polyvinyl polymeric vector system to murine renal and colon carcinoma results in potent antitumor immunity. Gene Therapy 1999, 6:833–839.

    Article  PubMed  CAS  Google Scholar 

  33. Galanis E, Hersh EM, Stopeck AT, et al.: Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/DOPE lipid complex: phase I/II experience. J Clin Oncol 1999, 17:3313–3323.

    PubMed  CAS  Google Scholar 

  34. Coleman M, Muller S, Quezada A, et al.: Nonviral interferon α gene therapy inhibits growth of established tumors by eliciting a systemic immune response. Hum Gene Ther 1998, 9:2223–2230. Intratumoral injection of a plasmid expression system encoding murine IFN-α led to up to 100% inhibition of tumor growth in different animal tumor models. Depletion studies showed that antitumoral effects were dependent on CD8+ T cells but not CD4+ cells. Complete tumor-free mice gained immune resistance to a subsequent tumor challenge.

    PubMed  CAS  Google Scholar 

  35. Wang LH, Ju DW, Sun Y, et al.: The potent antitumor effects of combined p16 gene and GMCSF gene therapy through efficient induction of antitumor immunity. J Cancer Res Clin Oncol 2001, 127:101–108.

    Article  PubMed  CAS  Google Scholar 

  36. Lokich J: Spontaneous regression of metastatic renal cancer. Case report and literature review. Am J Clin Oncol 1997, 20:416–418.

    Article  PubMed  CAS  Google Scholar 

  37. Jantzer P, Schendel DJ: Human renal cell carcinoma antigenspecific CTLs: antigen-driven selection and long-term persistence in vivo. Cancer Res 1998, 58:3078–3086.

    PubMed  CAS  Google Scholar 

  38. Nelson WG, Simons JW, Mikhak B, et al.: Cancer cells engineered to secrete granulocyte-macrophage colonystimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol 2000, 46(suppl):67–72.

    Article  Google Scholar 

  39. Schwaab T, Heany JA, Schned AR, et al.: A randomized phase II trial comparing two different sequence combinations of autologous vaccine and human recombinant interferon gamma and human recombinant interferon alpha2B therapy in patients with metastatic renal cell carcinoma: clinical outcome and analysis of immunological parameters. J Urol 2000, 163:1322–1327.

    Article  PubMed  CAS  Google Scholar 

  40. Gong J, Chen D, Kashiwaba M, Kufe D: Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nature Med 1997, 3:558–561. See also [20,21,41]. This publication was the first study to demonstrate that fusions of dendritic and tumor cells can be used in the treatment of cancer.

    Article  PubMed  CAS  Google Scholar 

  41. Wang J, Saffold S, Cao X, et al.: Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol 1998, 161:5516–5524.

    PubMed  CAS  Google Scholar 

  42. Holtl L, Rieser C, Papesh C, et al.: Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 2000, 161:777–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausch, I., Ardelt, P., Böhle, A. et al. Immune gene therapy in urology. Curr Urol Rep 3, 82–89 (2002). https://doi.org/10.1007/s11934-002-0015-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-002-0015-6

Keywords

Navigation