Skip to main content

Advertisement

Log in

Clinical manifestations and pathogenesis of hydroxyapatite crystal deposition in juvenile dermatomyositis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Pathologic deposition of mineral in the form of bone-like hydroxyapatite is a frequent occurrence in juvenile dermatomyositis (JDM) and other connective tissue diseases. Although the sizes of the mineral crystals in JDM are similar to those in bone, there is much more mineral in the deposits than there is in bone. Bone matrix proteins also accumulate associated with the deposits. The reasons for the formation of these deposits are not known. It is our hypothesis that persistent inflammation is a component of JDM and other hydroxyapatite deposition diseases. Other contributing factors are genetic, environmental, and physical chemical. This paper discusses the influence of inflammation on the deposition of hydroxyapatite, with emphasis on the clinical and environmental factors that may facilitate the formation of calcific deposits in JDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Marie I, Hatron PY, Levesque H, et al.: Influence of age on characteristics of polymyositis and dermatomyositis in adults. Medicine 1999, 78:139–147.

    Article  PubMed  CAS  Google Scholar 

  2. Boulman N, Slobodin G, Rozenbaum M, Rosner I: Calcinosis in rheumatic diseases. Semin.Arthritis Rheum 2005, 34:805–812.An excellent review of the association of calcinosis in the spectrum of rheumatic disease

    Article  PubMed  Google Scholar 

  3. Salmon JE, Roman MJ: Accelerated atherosclerosis in systemic lupus erythermatosus: implications for patient management. Curr Opin Rheumatol 2001, 13:341–344.

    Article  PubMed  CAS  Google Scholar 

  4. Jono S, Shioi A, Ikari Y, Nishizawa Y: Vascular calcification in chronic kidney disease. J Bone Miner Metab 2006, 24:176–181.

    Article  PubMed  Google Scholar 

  5. Werner L, Kollarits CR, Mamalis N, Olson RJ: Surface calcification of a 3-piece silicone intraocular lens in a patient with asteroid hyalosis: a clinicopathologic case report. Ophthalmology 2005, 112:447–452.

    Article  PubMed  Google Scholar 

  6. Legrand AP, Marinov G, Pavlov S, et al.: Degenerative mineralization in the fibrous capsule of silicone breast implants. J Mater Sci Mater Med 2005, 16:477–485.

    Article  PubMed  CAS  Google Scholar 

  7. Smith RL, Sundberg J, Shamiyeh E, et al.: Skin involvement in Juvenile Dermatomyositis (JDM) is associated with loss of end row naifold capillary (NFC) loops. J Rheumatol 2004, 31:1644–1649.

    PubMed  Google Scholar 

  8. Mendez EP, Lipton RB, Dyer A, et al.: Incidence of Juvenile Dermatomyositis (JDM) 1995–98: results from the NIAMS Registr y. Arthritis Care Res 2003, 49:300–305.

    Article  Google Scholar 

  9. Banker BQ: Dermatomyositis of childhood. J Neuropathol Exp Neurol 1975, 34:46–75.

    Article  PubMed  CAS  Google Scholar 

  10. Pachman LM, Fedczyna TO, Lutz JL, et al.: Increased CD8+and CD56+ lymphocytes in untreated Juvenile Dermatomyositis (JDM) muscle biopsies (MBx) are associated with a short compared with a long disease duration [abstract]. Arthritis Rheum 2000, 43:772.

    Article  Google Scholar 

  11. Bowyer SL, Blane CE, Sullivan DB, Cassidy JT: Childhood dermatomyositis: factors predicting functional outcome and development of dystrophic calcification. J Pediatr 1983, 103:882–888.

    Article  PubMed  CAS  Google Scholar 

  12. Bode RK, Klein-Gitelman MS, Miller ML, et al.: Disease activity score for children with Juvenile Dermatomyositis (JDM): Reliability and validity evidence. Arthritis Care Res 2003, 49:7–15.

    Article  Google Scholar 

  13. Rider LG, Giannini EH, Brunner HI, et al.: International consensus on preliminary definitions of improvement in adult and juvenile myositis. Arthritis Rheum 2004, 50:2281–2290.

    Article  PubMed  Google Scholar 

  14. Blane CE, White SJ, Braunstein EM, et al.: Patterns of calcification in childhood dermatomyositis. AJR 1984, 142:397–400.

    PubMed  CAS  Google Scholar 

  15. Tezak Z, Hoffman EP, Lutz JL, et al.: Expression profiling in DQA1*0501 children with juvenile dermatomyositis: a novel model of pathogenesis. J Immunol 2002, 168:4154–4163.

    PubMed  CAS  Google Scholar 

  16. Chen Y-W, O’Connor KA, Abbott K, et al.: Duration of active disease influences gene expression in muscle from children with juvenile dermatomyositis: dendritic cell and vascular involvement. 2006, Submitted for publication.

  17. Pachman LM, Abbott K, Sinacore JM, et al.: Duration of illness is an important variable for untreated children with juvenile dermatomyositis. J Pediatr 2006, 148:247–253.

    Article  PubMed  Google Scholar 

  18. Pachman LM, Liotta-Davis MR, Hong DK, et al.: TNFalpha-308A allele in juvenile dermatomyositis: association with increased production of tumor necrosis factor alpha, disease duration, and pathologic calcifications. Arthritis Rheum 2000, 43:2368–2377.

    Article  PubMed  CAS  Google Scholar 

  19. Fedczyna TO, Lutz J, Pachman LM: Expression of TNF-a by muscle fibers in biopsies from untreated children with juvenile dermatomyositis: association with the TNFa-308A allele. Clin Immunol 2001, 100:236–239.

    Article  PubMed  CAS  Google Scholar 

  20. Pachman LM, Lingen M, Caliendo J, et al.: Muscle biopsy.ndings in 38 untreated children with juvenile dermatomyositis (JDM): capillary occlusion is associated with the TNF2 allele [abstract]. Arthritis Rheum 1999, 42:1994-S403.

    Google Scholar 

  21. Adams EM, Kirkley J, Eidelman G, et al.: The predominance of beta (CC) chemokine transcripts in idiopathic inflammatory muscle diseases. Proc Assoc Am Physicians 1997, 109:275–285.

    PubMed  CAS  Google Scholar 

  22. Lundberg I: The role of cytokines, chemokines, and adhesion molecules in the pathogenesis of the idiopathic inflammatory myopathies. Curr Rheumatol Rep 2000, 2:216–224.

    Article  PubMed  CAS  Google Scholar 

  23. Love LA, Leff RL, Fraser DD, et al.: A new approach to the classification of idiopathic infiammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 1991, 70:360–374.

    CAS  Google Scholar 

  24. Li CK, Varsani H, Holton JL, et al.: MHC Class I overexpression on muscles in early juvenile dermatomyositis. J Rheumatol 2004, 31:605–609.

    PubMed  CAS  Google Scholar 

  25. McDouall RM, Dunn MJ, Dubowitz V: Nature of the mononuclear infiltrate and the mechanism of muscle damage in juvenile dermatomyositis and Duchenne muscular dystrophy. J Neurol Sci 1990, 99:199–217.

    Article  PubMed  CAS  Google Scholar 

  26. Myones BL, Luckey JP, Hayford JR, Pachman LM: Increased neopterin levels in juvenile dermatomyositis correlate with disease activity and are indicative of macrophage activation. Arthritis Rheum 1989, 52:S83.

    Google Scholar 

  27. DeBenedetti F, DeAmici M, Aramini L, et al.: Correlation of serum neopterin concentrations with disease activity in juvenile dermatomyositis. Arch Dis Child 1993, 69:232–235.

    Article  CAS  Google Scholar 

  28. Miller ML, Lantner R, Pachman LM: Natural and antibody-dependent cellular cytotoxicity in children with systemic lupus erythematosus and juvenile dermatomyositis. J Rheumatol 1983, 10:640–642.

    PubMed  CAS  Google Scholar 

  29. Bank I, Miranda AF, Chess L: Mechanisms of cell-mediated myocytotoxicity in the peripheral blood of patients with inflammatory myopathies. J Clin Immunol 2001, 21:328–334.

    Article  PubMed  CAS  Google Scholar 

  30. O’Gorman MRG, Bianchi L, Zass D, et al.: Decreased CD54(ICAM-1) positive non-CD19+ lymphocytes in the periheral blood of untreated children with active symptoms of Juvenile Dermatomyositis. Clin Diag Lab Immunol 2000, 7:693–697.

    Google Scholar 

  31. Stein DP, Dalakas M: intercellular adhesionmolecule-1 expression is upregulated in patients with dermatomyositis [abstract]. Ann Neurol 1993, 34:268.

    Google Scholar 

  32. O’Connor KA, Abbott K, Sabin B, et al.: MxA gene expression in Juvenile Dermatomyositis in peripheral blood mononuclear cells: association with muscle involvement. J Clin Immunol 2006, In press.

  33. Christen-Zaechs S, Sundberg S, Abbott K, et al.: Association of nailfold capillaroscopy (NFC) and disease activity score (DAS) over time in previously untreated juvenile dermatomyositis (JDM) [abstract]. Arthritits Rheum 2005, 52:S723.

    Google Scholar 

  34. Rouster-Stevens KA, Daru JA, Pachman LM, et al.: Pharmacokinetic study of oral prednisolone compared with intravenous methylprednisolone in patients with vasculitis of rheumatic disease [abstract]. Arthritits Rheum 2004, 50:S107.

    Google Scholar 

  35. Stock SR, Ignatiev K, Lee PL, et al.: Pathological calcification in Juvenile Dermatomyositis (JDM): microCT and synchrotron x-ray diffraction reveal hydroxyapatite with varied microstructures. Calcified Tis Res 2004, 45:248–256.First demonstration that the mineral deposited in JDM was hydroxyapatite of crystal size similar to that in bone.

    CAS  Google Scholar 

  36. Pachman LM, Veis A, Stock SR, et al.: Composition of calcifications in children with juvenile dermatomyositis: chronic inflammation as a precipitating factor. 2006, Submitted for publication.

  37. Zhao P, Caretti G, Mitchell S, et al. Fgfr 4 is required for effective muscle regeneration in vivo: delineation of a Myo D-Tead2-Fgfr4 transcriptional pathway. J Biol Chem 2006, 281:429–438.

    Article  PubMed  CAS  Google Scholar 

  38. Boskey AL, Camacho NP, Mendelsohn R, et al.: FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures. Calcif Tissue Int 1992, 51:443–448.

    Article  PubMed  CAS  Google Scholar 

  39. Doyle DV: Tissue calcification and inflammation in osteoarthritis. J Pathol 1982, 136:199–216.

    Article  PubMed  CAS  Google Scholar 

  40. Halverson PB, Derfus BA: Calcium crystal-induced inflammation. Curr Opin Rheumatol 2001, 13:221–224.Addresses the debate of whether the presence of the crystals leads to inflammation or the inflammation causes mineral deposition.

    Article  PubMed  CAS  Google Scholar 

  41. Ng PP, Tan SH, Tan T: Lupus erythematosus panniculitis: a clinicopathologic study. Int J Dermatol 2002, 41:488–490.

    Article  PubMed  Google Scholar 

  42. Manzi S, Selzer F, Sutton-Tyrrell K, et al.: Prevalence and risk factors for carotid plaque in women with systemic lupus erythermatosus. Arthritis Rheum 1999, 42:51–60.

    Article  PubMed  CAS  Google Scholar 

  43. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL: High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 1994, 93:2393–2402.

    Article  PubMed  CAS  Google Scholar 

  44. Bini A, Mann KG, Kudryk BJ, Schoen FJ: Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler Thromb Vasc Biol 1999, 19:1852–1861.

    PubMed  CAS  Google Scholar 

  45. Narvaez CJ, Welsh J: Role of mitochondria and caspases in vitamin D mediated apoptosis of MCF-7 breast cancer cells. J Biol Chem 2001, 276:9101–9107.

    Article  PubMed  CAS  Google Scholar 

  46. Campean V, Neureiter D, Nonnast-Daniel B, et al.: CD40-CD154 expression in calcified and non-calcified coronary lesions of patients with chronic renal failure. Atherosclerosis 2006, In press.

  47. Wadwa RP, Kinney GL, Ogden L, et al.: Soluble interleukin-2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. Int J Biochem Cell Biol 2006, 38:996–1003.

    Article  PubMed  CAS  Google Scholar 

  48. Mazzone A, Epistolato MC, De CR, et al.: Neoangiogenesis, T-lymphocyte infiltration, and heat shock protein-60 are biological hallmarks of an immunomediated inflammatory process in end-stage calcified aortic valve stenosis. J Am Coll Cardiol 2004, 43:1670–1676.

    Article  PubMed  CAS  Google Scholar 

  49. Gura T, Wright K, Veis A, Webb C: Identification of specific calcium-binding noncollagenous proteins associated with glutaraldehyde preserved bovine pericardium in the rat subdermal model. J Biomed Mater Res 1997, 35:483–495.

    Article  PubMed  CAS  Google Scholar 

  50. Shen M, Marie P, Farge D, et al.: Osteopontin is associated with bioprosthetic heart valve calcification in humans. CR Acad SciIII 1997, 320:49–57.

    CAS  Google Scholar 

  51. Stock SR, Rajamannan MN, Brooks ER, et al.: Pathological calcifications studied with microCT. X-ray Tomography Proceedings from 4th International Conference SPIE 5535. 2004.

  52. Khan SR: Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissueculture studies. Clin Exp Nephrol 2004, 8:75–88.

    Article  PubMed  CAS  Google Scholar 

  53. Ogrinc G, Kampalath B, Tomashefski JF, Jr.:Destruction and loss of bronchial cartilage in cystic fibrosis. Hum Pathol 1998, 29:65–73.

    Article  PubMed  CAS  Google Scholar 

  54. Hamada J, Ono W, Tamai K, et al.: Analysis of calcium deposits in calcific periarthritis. J Rheumatol 2001, 28:809–813.

    PubMed  CAS  Google Scholar 

  55. Ea HK, Liote F: Calcium pyrophosphate dihydrate and basic calcium phosphate crystal-induced arthropathies: update on pathogenesis, clinical features, and therapy. Curr Rheumatol Rep 2004, 6:221–227.

    Article  PubMed  Google Scholar 

  56. Bea F, Blessing E, Bennett BJ, et al.: Chronic inhibition of cyclooxygenase-2 does not alter plaque composition in a mouse model of advanced unstable atherosclerosis. Cardiovasc Res 2003, 60:198–204.

    Article  PubMed  CAS  Google Scholar 

  57. Pay S, Terkeltaub R: Calcium pyrophosphate dihydrate and hydroxyapatite crystal deposition in the joint: new developments relevant to the clinician. Curr Rheumatol Rep 2003, 5:235–243.

    Article  PubMed  Google Scholar 

  58. Wilmer WA, Magro CM: Calciphylaxis: emerging concepts in prevention, diagnosis, and treatment. Semin Dial 2002, 15:172–186.

    Article  PubMed  Google Scholar 

  59. Mach F, Schonbeck U, Fabunmi RP, et al.: T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation. Amer J Path 1999, 154:229–238.

    PubMed  CAS  Google Scholar 

  60. Mukamel M, Horev G, Mimouni M: New insight into calcinosis of juvenile dermatomyositis: a study of composition and treatment. J Pediatr 2001, 138:763–766.

    Article  PubMed  CAS  Google Scholar 

  61. Lotz M, Rosen F, McCabe G, et al.: Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes. Proc Natl Acad Sci U S A 1995, 92:10364–10368.

    Article  PubMed  CAS  Google Scholar 

  62. Rosen F, McCabe G, Quach J, et al.: Differential effects of aging on human chondrocyte responses to transforming growth factor beta: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum 1997, 40:1275–1281.

    PubMed  CAS  Google Scholar 

  63. Rider LG, Miller FW: Classification and treatment of the juvenile idiopathic inflammatory myopathies. Rheum Dis Clin North Am 1997, 23:619–655.

    Article  PubMed  CAS  Google Scholar 

  64. Wananukul S, Pongprasit P, Wattanakrai P: Calcinoisis cutis presenting years before other clinical manifestations of juvenile dermatomyositis: report of two cases. Aust J Dermatol 1997, 58:202–205.

    Article  Google Scholar 

  65. Bitnum S, Daeschner C, Travis L, et al.: Dermatomyositis. J Pediatr 1964, 64:101–131.

    Article  PubMed  CAS  Google Scholar 

  66. Goldberg M, Boskey AL: Lipids and piomineralizations. In Progress in Histochemistry and Cytochemistry. Stuttgart, Germany: Gustav Fischer Verlag/VCH Publishers; 1996:1–187.

    Google Scholar 

  67. Monma N, Iwasaki T, Masuda T, Satodate R: Light and electron microscopic observation on the process of tissue calcification in a case of parathyroid adenoma. Acta Pathol Jpn 1987, 37:1621–1635.

    PubMed  CAS  Google Scholar 

  68. Boskey AL, Vigorita VJ, Sencer O, et al.: Chemical, microscopic, and ultrastructural characterization of the mineral deposits in tumoral calcinosis. Clin Orthop 1983,258-269.

  69. Specktor P, Cooper JG, Indelman M, Sprecher E: Hyperphosphatemic familial tumoral calcinosis caused by a mutation in GALNT3 in a European kindred. J Hum Genet 2006, In press.

  70. Oh C, Kim KH: A case of nodular cystic fat necrosis: the end stage lesion showing calcification and lipomembranous changes. J Dermatol 1998, 25:616–621.

    PubMed  CAS  Google Scholar 

  71. Wang H, Feng YJ, Gou, BD, et al.: Effects of LDL, cholesterol, and their oxidized forms on the precipitation kinetics of calcium phosphates. Clin Chem 2003, 49:2027–2036.

    Article  PubMed  CAS  Google Scholar 

  72. Boskey AL, Bullough PG, Vigorita V, Di CE: Calcium-acidic phospholipid-phosphate complexes in human hydroxyapatite-containing pathologic deposits. Am J Pathol 1988, 133:22–29.

    PubMed  CAS  Google Scholar 

  73. Wu LN, Genge BR, Dunkelberger DG, et al.: Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem 1997, 272:4404–4411.

    Article  PubMed  CAS  Google Scholar 

  74. Anderson HC: Matrix vesicles and calcification. Curr Rheumatol Rep 2003, 5:222–226.Reviews the role of extracellular matrix vesicles in physiologic and dystrophic calcification.

    Article  PubMed  Google Scholar 

  75. Kirsch T, Claassen H: Matrix vesicles mediate mineralization of human thyroid cartilage. Calcif Tissue Int 2000, 66:292–297.

    Article  PubMed  CAS  Google Scholar 

  76. Boskey AL: Pathogenesis of cartilage calcification: mechanisms of crystal deposition in cartilage. Curr Rheumatol Rep 2002, 4:245–251.

    Article  PubMed  Google Scholar 

  77. Boskey AL: Mineralization. In Handbook of Biomechanics. Edited by Cowin S. 2004. Boca Raton, FL: CRC Press; 2001:5.1–5.34.

    Google Scholar 

  78. Register TC, McLean FM, Low MG, Wuthier RE: Roles of alkaline phosphatase and labile internal mineral in matrix vesicle-mediated calcification. Effect of selective release of membrane-bound alkaline phosphatase and treatment with isosmotic pH 6 buffer. J Biol Chem 1986, 261:9354–9360.

    PubMed  CAS  Google Scholar 

  79. Johnson K: Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthritis Cartilage 2004, 12:321–325.

    Article  PubMed  CAS  Google Scholar 

  80. Johnson K, Hessle L, Vaingankar S, et al.: Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol. 2000, 279:R1365-R1377.

    PubMed  CAS  Google Scholar 

  81. Gilbert SJ, Duance VC, Mason DJ: Does protein kinase R mediate TNF-alpha- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? Arthritis Res Ther 2004, 6:R46-R55.

    Article  PubMed  CAS  Google Scholar 

  82. Caterson B, Flannery CR, Hughes CB, Little CB: Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol 2004, 2000:333–344.Review of cartilage catabolism.

    Google Scholar 

  83. Gokhale J, Robey P, Boskey AL: The Biochemistry of bone. In Osteoporosis, edn 2. Edited by Marcus R, Feldman D, Kelsey J. San Diego: Academic Press; 2001:107–189.

    Google Scholar 

  84. Arerrahrou Z, Axtner SB, Kacmarek PM, et al.: A locus on chromosome 7 determines dramatic up-regulation of osteopontin in dystrophic cardiac calcification in mice. Am J Pathol 2004, 164:1379–138732.

    Google Scholar 

  85. Wada T, McKee MD, Steitz S, Giachelli CM: Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 1999, 84:166–178.

    PubMed  CAS  Google Scholar 

  86. O’Brien KD, Kuusisto J, Reichenbach DD, et al.: Osteopontin is expressed in human aortic valvular lesions [see comments]. Circulation 1995, 92:2163–2168.

    PubMed  Google Scholar 

  87. Mendelson BC, Linscheid RL, Dobyns JH, Muller SA: Surgical treatment of calcinosis cutis in the upper extremity. J Hand Surg 1977, 2:318–327.

    CAS  Google Scholar 

  88. Klein-Gitelman MS, Daaboul J, Oren PP, et al.: Acquired lipodystrophy in juvenile dermatomyositis (JDM): who is at risk? [abstract]. J Invest Med 1997, 45:342A.

    Google Scholar 

  89. Quecedo E, Febrer I, Serrano G, et al.: Partial lipodystrophy associated with juvenile dermatomyositis: report of two cases. Ped Derm 1996, 13:477–482.

    Article  CAS  Google Scholar 

  90. Pachman LM, Ramsey-Goldman R, Lipton RB, et al.: The NIAMS Juvenile Dermatomyositis Registry parent assessment of child’s symptoms at 36 months after diagnosis [abstract]. Arthritis Rheum 2002, 46:S307.

    Google Scholar 

  91. Vogel G: Bacteria to blame for kidney stones? Science 1998, 281:153.

    Article  PubMed  CAS  Google Scholar 

  92. Canver CC, Gregory RD, Cooler SD, Voytovich MC: Association of osteopontin with calcification in human mitral valves. J Cardiovasc Surg (Torino) 2000, 41:171–174.

    CAS  Google Scholar 

  93. Fisler RE, Liang MG, Fuhlbrigge RC, et al.: Aggressive management of juvenile dermatomyositis results in improved outcome and decreased incidence of calcinois. J Amer Acad Derm 2002, 47:505–511.Documentation that high dose intermittent methylprednisolone early in the disease course may abort the development of calcifications in children with JDM

    Article  Google Scholar 

  94. Callen AM, Pachman LM, Hayford JR, et al.: Intermittent high-dose intravenous methylprednisolone (IV Pulse) therapy prevents calcinosis and shortens disease course in juvenile dermatomyositis (JDMS) [abstract]. Arthritis Rheum 1994, 37:R10.

    Article  Google Scholar 

  95. Olson NY, Lindsley CB: Adjunctive use of hydroxychloroquine in childhood dermatomyositis. J Rheumatol 1989, 16:1545–1547.

    PubMed  CAS  Google Scholar 

  96. Lang BA, Laxer RM, Murphy G, et al.: Treatment of dermatomyositis with intravenous gammaglobulin. Am J Med 1991, 91:169–172.

    Article  PubMed  CAS  Google Scholar 

  97. Zeller V, Cohen P, Prieur AM, Guillevin L: Cyclosporin a therapy in refractory juvenile dermatomyositis. Experience and longterm followup of 6 cases. J Rheumatol 1996, 23:1424–1427.

    PubMed  CAS  Google Scholar 

  98. Reinert P, Hamberger C, Rahimy MC, et al.: [Value of cyclosporin A in dermatomyositis in a child]. Arch Fr Pediatr 1988, 45:201–203.

    PubMed  CAS  Google Scholar 

  99. Maillard SM, Wilkinson N, Riley P, et al.: The treatment of persistent severe idiopathic inflammatory myositis (IIM) with anti-TNF-alpha therapy [abstract]. Arthritis Rheum 2002, 46:S307.

    Google Scholar 

  100. Miller ML, Smith RL, Abbott K, et al.: Use of etanercept in chronic Juvenile Dermatomyositis (JDM). [abstract]. Arthritis Rheum 2002, 46:S306.

    Google Scholar 

  101. Rider LG: Calcinosis in Juvenile Dermatomyositis: Pathogenesis and Current Therapies. Pediatr Rheum On Line Jour http://www.pedrheumonlinejournal.org/April/ calinosis.html. 2003. An excellent and comprehensive review of clinical aspects of calcification in children with inflammatory myopathy

  102. Oliveri MB, Palermo R, Mautalen C, Hubscher O: Regression of calcinosis during diltiazem treatment in juvenile dermatomyositis. J Rheumatol 1996, 23:2152–2155.

    PubMed  CAS  Google Scholar 

  103. Shearin JC, Pickrell K: Surgical treatment of subcutaneous calcifications of polymyositis or dermatomyositis. Ann Plast Surg 1980, 5:381–385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pachman, L.M., Boskey, A.L. Clinical manifestations and pathogenesis of hydroxyapatite crystal deposition in juvenile dermatomyositis. Curr Rheumatol Rep 8, 236–243 (2006). https://doi.org/10.1007/s11926-996-0031-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-996-0031-5

Keywords

Navigation