Skip to main content
Log in

Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain

  • Chronic Pain (R Staud, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic pain in osteoarthritis (OA) is characterized by pain sensitization, which involves both peripheral and central mechanisms. Studies suggest synovial macrophage and spinal microglia are implicated in pain sensitization in OA. We, therefore, reviewed the evidence of whether synovial macrophage and spinal microglia facilitated pain sensitization at diverse levels and how this event occurred in OA.

Recent Findings

Peripherally, joint inflammation is now believed to be a source of OA-related pain. Synovial macrophages accumulate in OA inflamed synovium and display a pro-inflammatory phenotype. Abundant macrophage-derived pro-inflammatory cytokines and other pain-causing substance facilitate hyperexcitation of primary sensory neuron in OA-related pain. Thus, activated synovial macrophage was considered a predictor for phenotyping of OA pain clinically. In response to affected joint-derived strong nociception, aberrant neuronal excitability is often associated with the hyperactivity of microglia in the spinal dorsal horn, thereby leading to central sensitization.

Summary

Hyperactivity of synovial macrophage and spinal microglia underlies the mechanisms of pain sensitization at the peripheral and central level in OA. This concept provides not only a clinically relevant strategy for identifying the phenotype of OA-related pain but also has the potential to develop individualized interventions for OA, particularly in those patients with hyperactivity of macrophage and microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pan F, Jones G. Clinical perspective on pain and pain phenotypes in osteoarthritis. Curr Rheumatol Rep. 2018;20(12):79. https://doi.org/10.1007/s11926-018-0796-3.

    Article  PubMed  Google Scholar 

  2. Thomas E, Peat G, Croft P. Defining and mapping the person with osteoarthritis for population studies and public health. Rheumatology (Oxford). 2014;53(2):338–45. https://doi.org/10.1093/rheumatology/ket346.

    Article  Google Scholar 

  3. Yu SPC, Hunter DJ. Emerging drugs for the treatment of knee osteoarthritis. Expert Opin Emerg Dr. 2015;20(3):361–78. https://doi.org/10.1517/14728214.2015.1037275.

    Article  CAS  Google Scholar 

  4. Cohen E, Lee YC. A mechanism-based approach to the management of osteoarthritis pain. Curr Osteoporos Rep. 2015;13(6):399–406. https://doi.org/10.1007/s11914-015-0291-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malfait AM, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol. 2013;9(11):654–64. https://doi.org/10.1038/nrrheum.2013.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. https://doi.org/10.1016/j.joca.2012.11.012.

    Article  CAS  Google Scholar 

  7. Cardoso JS, Riley JL 3rd, Glover T, Sibille KT, Bartley EJ, Goodin BR, et al. Experimental pain phenotyping in community-dwelling individuals with knee osteoarthritis. Pain. 2016;157(9):2104–14. https://doi.org/10.1097/j.pain.0000000000000625.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frey-Law LA, Bohr NL, Sluka KA, Herr K, Clark CR, Noiseux NO, et al. Pain sensitivity profiles in patients with advanced knee osteoarthritis. Pain. 2016;157(9):1988–99. https://doi.org/10.1097/j.pain.0000000000000603.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Osgood E, Trudeau JJ, Eaton TA, Jensen MP, Gammaitoni A, Simon LS, et al. Development of a bedside pain assessment kit for the classification of patients with osteoarthritis. Rheumatol Int. 2015;35(6):1005–13. https://doi.org/10.1007/s00296-014-3191-z.

    Article  CAS  PubMed  Google Scholar 

  10. Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthr Cartil. 2020;28(5):562–71. https://doi.org/10.1016/j.joca.2019.11.006.

    Article  CAS  Google Scholar 

  11. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–9. https://doi.org/10.1002/art.30148.

    Article  PubMed  Google Scholar 

  12. Neogi T, Guermazi A, Roemer F, Nevitt MC, Scholz J, Arendt-Nielsen L, et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol. 2016;68(3):654–61. https://doi.org/10.1002/art.39488.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW, et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr Cartil. 2016;24(9):1613–21. https://doi.org/10.1016/j.joca.2016.04.010.

    Article  CAS  Google Scholar 

  14. Haraden CA, Huebner JL, Hsueh MF, Li YJ, Kraus VB. Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation. Arthritis Res Ther. 2019;21(1):146. https://doi.org/10.1186/s13075-019-1923-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffin TM, Scanzello CR. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol. 2019;37(Suppl 120(5)):57–63.

    PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis. 2018;77(10):1524–34. https://doi.org/10.1136/annrheumdis-2018-213450.

    Article  CAS  PubMed  Google Scholar 

  17. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154(Suppl 1):S10–28. https://doi.org/10.1016/j.pain.2013.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tran PB, Miller RE, Ishihara S, Miller RJ, Malfait AM. Spinal microglial activation in a murine surgical model of knee osteoarthritis. Osteoarthr Cartil. 2017;25(5):718–26. https://doi.org/10.1016/j.joca.2016.09.007.

    Article  CAS  Google Scholar 

  19. Yang JL, Xu B, Li SS, Zhang WS, Xu H, Deng XM, et al. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats. Mol Brain. 2012;5:18. https://doi.org/10.1186/1756-6606-5-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yusup A, Kaneko H, Liu L, Ning L, Sadatsuki R, Hada S, et al. Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee osteoarthritis: a cross-sectional study. Osteoarthr Cartil. 2015;23(11):1858–64. https://doi.org/10.1016/j.joca.2015.05.017.

    Article  CAS  Google Scholar 

  21. Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. The Lancet. 2005;365(9463):965–73. https://doi.org/10.1016/s0140-6736(05)71086-2.

    Article  CAS  Google Scholar 

  22. Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord. 2008;9:116. https://doi.org/10.1186/1471-2474-9-116.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol. 2000;27(6):1513–7.

    CAS  PubMed  Google Scholar 

  24. Neogi T, Frey-Law L, Scholz J, Niu J, Arendt-Nielsen L, Woolf C, et al. Sensitivity and sensitisation in relation to pain severity in knee osteoarthritis: trait or state? Ann Rheum Dis. 2015;74(4):682–8. https://doi.org/10.1136/annrheumdis-2013-204191.

    Article  PubMed  Google Scholar 

  25. Misra D, Fielding RA, Felson DT, Niu J, Brown C, Nevitt M, et al. Risk of knee osteoarthritis with obesity, sarcopenic obesity, and sarcopenia. Arthritis Rheumatol. 2019;71(2):232–7. https://doi.org/10.1002/art.40692.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Syx D, Tran PB, Miller RE, Malfait AM. Peripheral mechanisms contributing to osteoarthritis pain. Curr Rheumatol Rep. 2018;20(2):9. https://doi.org/10.1007/s11926-018-0716-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthr Cartil. 2020;28(5):555–61. https://doi.org/10.1016/j.joca.2020.01.007.

    Article  CAS  Google Scholar 

  28. Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, et al. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 2007;56(1):147–57. https://doi.org/10.1002/art.22337.

    Article  CAS  PubMed  Google Scholar 

  29. . Sakurai Y, Fujita M, Kawasaki S, Sanaki T, Yoshioka T, Higashino K, et al. Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain. 2019;160(4):895–907. https://doi.org/10.1097/j.pain.0000000000001466This study confirms a key role of synovial macrophage in pain of OA murine models.

    Article  CAS  PubMed  Google Scholar 

  30. Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8(6):R187. https://doi.org/10.1186/ar2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sambamurthy N, Zhou C, Nguyen V, Smalley R, Hankenson KD, Dodge GR, et al. Deficiency of the pattern-recognition receptor CD14 protects against joint pathology and functional decline in a murine model of osteoarthritis. PLoS One. 2018;13(11):e0206217. https://doi.org/10.1371/journal.pone.0206217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blom AB, van Lent PL, Holthuysen AE, van der Kraan PM, Roth J, van Rooijen N, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2004;12(8):627–35. https://doi.org/10.1016/j.joca.2004.03.003.

    Article  Google Scholar 

  33. Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 2015;67(4):956–65. https://doi.org/10.1002/art.39006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. . Culemann S, Gruneboom A, Nicolas-Avila JA, Weidner D, Lammle KF, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572(7771):670–5. https://doi.org/10.1038/s41586-019-1471-1This study provides a critical description of synovial macrophages are a mixed population, consisting of different origins and function phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Utomo L, van Osch GJ, Bayon Y, Verhaar JA, Bastiaansen-Jenniskens YM. Guiding synovial inflammation by macrophage phenotype modulation: an in vitro study towards a therapy for osteoarthritis. Osteoarthr Cartil. 2016;24(9):1629–38. https://doi.org/10.1016/j.joca.2016.04.013.

    Article  CAS  Google Scholar 

  36. Tsuneyoshi Y, Tanaka M, Nagai T, Sunahara N, Matsuda T, Sonoda T, et al. Functional folate receptor beta-expressing macrophages in osteoarthritis synovium and their M1/M2 expression profiles. Scand J Rheumatol. 2012;41(2):132–40. https://doi.org/10.3109/03009742.2011.605391.

    Article  CAS  PubMed  Google Scholar 

  37. Utomo L, Bastiaansen-Jenniskens YM, Verhaar JA, van Osch GJ. Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages. Osteoarthr Cartil. 2016;24(12):2162–70. https://doi.org/10.1016/j.joca.2016.07.018.

    Article  CAS  Google Scholar 

  38. Fahy N, de Vries-van Melle ML, Lehmann J, Wei W, Grotenhuis N, Farrell E, et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr Cartil. 2014;22(8):1167–75. https://doi.org/10.1016/j.joca.2014.05.021.

    Article  CAS  Google Scholar 

  39. Hu Y, Gui Z, Zhou Y, Xia L, Lin K, Xu Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019;145:146–60. https://doi.org/10.1016/j.freeradbiomed.2019.09.024.

    Article  CAS  PubMed  Google Scholar 

  40. Tu J, Hong W, Guo Y, Zhang P, Fang Y, Wang X, et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from different origins in arthritis. Front Immunol. 2019;10:1146. https://doi.org/10.3389/fimmu.2019.01146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He XH, Zang Y, Chen X, Pang RP, Xu JT, Zhou X, et al. TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain. 2010;151(2):266–79. https://doi.org/10.1016/j.pain.2010.06.005.

    Article  CAS  PubMed  Google Scholar 

  42. Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13(7):533–48. https://doi.org/10.1038/nrd4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inglis JJ, Nissim A, Lees DM, Hunt SP, Chernajovsky Y, Kidd BL. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res Ther. 2005;7(4):R807–16. https://doi.org/10.1186/ar1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Segond von Banchet G, Boettger MK, Fischer N, Gajda M, Brauer R, Schaible HG. Experimental arthritis causes tumor necrosis factor-alpha-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain. 2009;145(1-2):151–9. https://doi.org/10.1016/j.pain.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  45. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. https://doi.org/10.1038/nrrheum.2010.196.

    Article  CAS  PubMed  Google Scholar 

  46. Attur M, Belitskaya-Levy I, Oh C, Krasnokutsky S, Greenberg J, Samuels J, et al. Increased interleukin-1beta gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis. Arthritis Rheum. 2011;63(7):1908–17. https://doi.org/10.1002/art.30360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Obreja O, Rathee PK, Lips KS, Distler C, Kress M. IL-1 beta potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J. 2002;16(12):1497–503. https://doi.org/10.1096/fj.02-0101com.

    Article  CAS  PubMed  Google Scholar 

  48. Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, et al. Nociceptors are interleukin-1beta sensors. J Neurosci. 2008;28(52):14062–73. https://doi.org/10.1523/JNEUROSCI.3795-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A. 2012;109(50):20602–7. https://doi.org/10.1073/pnas.1209294110.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Belkouch M, Dansereau MA, Reaux-Le Goazigo A, Van Steenwinckel J, Beaudet N, Chraibi A, et al. The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a Gbetagamma-dependent mechanism. J Neurosci. 2011;31(50):18381–90. https://doi.org/10.1523/JNEUROSCI.3386-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kao DJ, Li AH, Chen JC, Luo RS, Chen YL, Lu JC, et al. CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons. J Neuroinflammation. 2012;9:189. https://doi.org/10.1186/1742-2094-9-189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. . Soni A, Wanigasekera V, Mezue M, Cooper C, Javaid MK, Price AJ, et al. Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and PainDETECT-based patient stratification to arthroplasty outcome. Arthritis Rheumatol. 2019;71(4):550–60. https://doi.org/10.1002/art.40749This study provides strong evidence of centrally mediated pain mechanisms in OA patients by MRI neuroimaging as well as neuropathic-like pain symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Reckziegel D, Raschke F, Cottam WJ, Auer DP. Cingulate GABA levels inversely correlate with the intensity of ongoing chronic knee osteoarthritis pain. Mol Pain. 2016;12:174480691665069. https://doi.org/10.1177/1744806916650690.

    Article  CAS  Google Scholar 

  54. Liu J, Chen L, Tu Y, Chen X, Hu K, Tu Y, et al. Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex: a multiple mode MRI study. Brain Behav Immun. 2019;82:253–63. https://doi.org/10.1016/j.bbi.2019.08.193.

    Article  PubMed  Google Scholar 

  55. Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron. 2018;100(6):1292–311. https://doi.org/10.1016/j.neuron.2018.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sagar DR, Burston JJ, Hathway GJ, Woodhams SG, Pearson RG, Bennett AJ, et al. The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain. Mol Pain. 2011;7:88. https://doi.org/10.1186/1744-8069-7-88.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ogbonna AC, Clark AK, Gentry C, Hobbs C, Malcangio M. Pain-like behaviour and spinal changes in the monosodium iodoacetate model of osteoarthritis in C57Bl/6 mice. Eur J Pain. 2013;17(4):514–26. https://doi.org/10.1002/j.1532-2149.2012.00223.x.

    Article  CAS  PubMed  Google Scholar 

  58. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology. 2018;129(2):343–66. https://doi.org/10.1097/ALN.0000000000002130.

    Article  PubMed  Google Scholar 

  59. Ji RR, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci. 2019;20(11):667–85. https://doi.org/10.1038/s41583-019-0218-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nieto FR, Clark AK, Grist J, Hathway GJ, Chapman V, Malcangio M. Neuron-immune mechanisms contribute to pain in early stages of arthritis. J Neuroinflammation. 2016;13(1):96. https://doi.org/10.1186/s12974-016-0556-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fernandez-Zafra T, Gao T, Jurczak A, Sandor K, Hore Z, Agalave NM, et al. Exploring the transcriptome of resident spinal microglia after collagen antibody-induced arthritis. Pain. 2019;160(1):224–36. https://doi.org/10.1097/j.pain.0000000000001394.

    Article  CAS  PubMed  Google Scholar 

  62. Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci. 2018;19(3):138–52. https://doi.org/10.1038/nrn.2018.2.

    Article  CAS  PubMed  Google Scholar 

  63. Upadhyay J, Baker SJ, Rajagovindan R, Hart M, Chandran P, Hooker BA, et al. Pharmacological modulation of brain activity in a preclinical model of osteoarthritis. Neuroimage. 2013;64:341–55. https://doi.org/10.1016/j.neuroimage.2012.08.084.

    Article  CAS  PubMed  Google Scholar 

  64. Taylor AM, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C, et al. Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci. 2015;35(22):8442–50. https://doi.org/10.1523/JNEUROSCI.4036-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ni HD, Yao M, Huang B, Xu LS, Zheng Y, Chu YX, et al. Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res. 2016;94(1):50–61. https://doi.org/10.1002/jnr.23672.

    Article  CAS  PubMed  Google Scholar 

  66. Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(25):10655–60. https://doi.org/10.1073/pnas.0610811104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci. 2009;29(21):6945–54. https://doi.org/10.1523/JNEUROSCI.0828-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taves S, Berta T, Chen G, Ji RR. Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plast. 2013;2013:753656–10. https://doi.org/10.1155/2013/753656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berta T, Qadri YJ, Chen G, Ji RR. Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res. 2016;95(10):1124–31. https://doi.org/10.1177/0022034516653604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28(20):5189–94. https://doi.org/10.1523/JNEUROSCI.3338-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of China (No. 81703524).

Author information

Authors and Affiliations

Authors

Contributions

TP and DW wrote this paper. FP, SH, and WG gave some critical comments and reviewed this paper. SH drew the figure.

Corresponding author

Correspondence to Di Wang.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Chronic Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Tt., Pan, F., Gao, W. et al. Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain. Curr Rheumatol Rep 23, 29 (2021). https://doi.org/10.1007/s11926-021-00997-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-00997-w

Keywords

Navigation