Skip to main content

Advertisement

Log in

Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics

  • Pediatric Rheumatology (S Ozen, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Type I interferonopathies are monogenic autoinflammatory diseases induced by constitutive activation of type I interferon. Here, we provide an overview of these diseases and describe underlying molecular pathways, related phenotypes, suggestive clinical signs and investigations for helping diagnosis process and therapeutic management.

Recent Findings

Recent genetic and functional discoveries have enabled deciphering mechanisms involved in the pathogenesis of the type I interferonopathies and considering promising targeted treatments, such as JAK inhibitors, both for monogenic and multifactorial interferon-related diseases.

Summary

The concept of the type I interferonopathies rests on the assumption that some diseases arise from a disturbance of interferon signalling pathway. In the presence of suggestive clinical signs (especially involving the central nervous system and the skin), a consistent positive type I interferon assessment is a further point in favour of genetic investigations in patients. This review also highlights the potential value of targeted therapeutics that should improve features of type I interferonopathies, thereby providing a validation of the underlying hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Isaacs A, Lindenmann J, Valentine RC. Pillars article: virus interference. II. Some properties of interferon. Proc R Soc Lond B Biol Sci. 1957. 147: 268-273. J Immunol. 2015;195:1921–6.

    CAS  PubMed  Google Scholar 

  2. Hartmann G. Nucleic acid immunity. Adv Immunol. 2017;133:121–69.

    CAS  PubMed  Google Scholar 

  3. Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci. 2011;1238:91–8.

    CAS  PubMed  Google Scholar 

  4. Crow YJ. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr Opin Immunol. 2015;32:7–12.

    CAS  PubMed  Google Scholar 

  5. Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med. 2016;213:2527–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. •• Uggenti C, Lepelley A, Crow YJ. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu Rev Immunol. 2019;37:247–67 A stimulating review on nucleic acid-driven inflammation pathway and type I interferonopathies.

    CAS  PubMed  Google Scholar 

  7. •• Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol. 2020;21:17–29 A comprehensive and stimulating review on regulation of the DNA sensing through cGAS and RLR.

    CAS  PubMed  Google Scholar 

  8. Rice GI, Melki I, Frémond M-L, Briggs TA, Rodero MP, Kitabayashi N, et al. Assessment of type I interferon signaling in pediatric inflammatory disease. J Clin Immunol. 2017;37:123–32.

    CAS  PubMed  Google Scholar 

  9. Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol. 2014;15:415–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;21:319–331.e8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Aicardi J, Goutières F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol. 1984;15:49–54.

    CAS  PubMed  Google Scholar 

  12. Lebon P, Badoual J, Ponsot G, Goutières F, Hémeury-Cukier F, Aicardi J. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J Neurol Sci. 1988;84:201–8.

    CAS  PubMed  Google Scholar 

  13. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in the gene encoding the 3′-5' DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet. 2006;38:917–20.

    CAS  PubMed  Google Scholar 

  14. Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat Genet. 2006;38:910–6.

    CAS  PubMed  Google Scholar 

  15. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41:829–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Rice GI, Kasher PR, Forte GMA, Mannion NM, Greenwood SM, Szynkiewicz M, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Rice GI, Del Toro DY, Jenkinson EM, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46:503–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. •• Crow YJ, Chase DS, Lowenstein Schmidt J, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A. 2015;167A:296–312 A novel technique of single molecule array enabling the detection of interferon alpha protein per se at the attomolar level in serum, plasma and cerebrospinal fluid.

    PubMed  Google Scholar 

  19. Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med. 2017;214:1547–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Rice GI, Kitabayashi N, Barth M, Briggs T, Burton A, Carpanelli M, et al. Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics. 2017;48:166–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ramesh V, Bernardi B, Stafa A, et al. Intracerebral large artery disease in Aicardi-Goutières syndrome implicates SAMHD1 in vascular homeostasis. Dev Med Child Neurol. 2010;52:725–32.

    PubMed  Google Scholar 

  22. Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet. 2007;80:811–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Singleton EB, Merten DF. An unusual syndrome of widened medullary cavities of the metacarpals and phalanges, aortic calcification and abnormal dentition. Pediatr Radiol. 1973;1:2–7.

    CAS  PubMed  Google Scholar 

  24. Feigenbaum A, Müller C, Yale C, Kleinheinz J, Jezewski P, Kehl HG, et al. Singleton-Merten syndrome: an autosomal dominant disorder with variable expression. Am J Med Genet A. 2013;161A:360–70.

    PubMed  Google Scholar 

  25. Rice GI, Rodero MP, Crow YJ. Human disease phenotypes associated with mutations in TREX1. J Clin Immunol. 2015;35:235–43.

    CAS  PubMed  Google Scholar 

  26. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371:507–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 2014;124:5516–20.

    PubMed Central  PubMed  Google Scholar 

  28. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe. 2015;18:157–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Munoz J, Rodière M, Jeremiah N, Rieux-Laucat F, Oojageer A, Rice GI, et al. Stimulator of interferon genes-associated vasculopathy with onset in infancy: a mimic of childhood granulomatosis with polyangiitis. JAMA Dermatol. 2015;151:872–7.

    PubMed  Google Scholar 

  30. Omoyinmi E, Melo Gomes S, Nanthapisal S, Woo P, Standing A, Eleftheriou D, et al. Stimulator of interferon genes-associated vasculitis of infancy. Arthritis Rheum. 2015;67:808.

    Google Scholar 

  31. Picard C, Thouvenin G, Kannengiesser C, Dubus JC, Jeremiah N, Rieux-Laucat F, et al. Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 mutation). Chest. 2016;150:e65–71.

    PubMed  Google Scholar 

  32. Chia J, Eroglu FK, Özen S, Orhan D, Montealegre-Sanchez G, de Jesus AA, et al. Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. J Am Acad Dermatol. 2016;74:186–9.

    PubMed  Google Scholar 

  33. Clarke SLN, Pellowe EJ, de Jesus AA, Goldbach-Mansky R, Hilliard TN, Ramanan AV. Interstitial lung disease caused by STING-associated vasculopathy with onset in infancy. Am J Respir Crit Care Med. 2016;194:639–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Melki I, Rose Y, Uggenti C, et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J Allergy Clin Immunol. 2017;140:543–552.e5.

    CAS  PubMed  Google Scholar 

  35. König N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tüngler V, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76:468–72.

    PubMed  Google Scholar 

  36. Manoussakis MN, Mavragani CP, Nezos A, Zampeli E, Germenis A, Moutsopoulos HM. Type I interferonopathy in a young adult. Rheumatology (Oxford). 2017;56:2241–3.

    CAS  Google Scholar 

  37. Konno H, Chinn IK, Hong D, Orange JS, Lupski JR, Mendoza A, et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep. 2018;23:1112–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yu ZX, Zhong LQ, Song HM, Wang CY, Wang W, Li J, et al. Stimulator of interferon genes-associated vasculopathy with onset in infancy: first case report in China. Zhonghua Er Ke Za Zhi. 2018;56:179–85.

    CAS  PubMed  Google Scholar 

  39. Saldanha RG, Balka KR, Davidson S, Wainstein BK, Wong M, Macintosh R, et al. A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy. Front Immunol. 2018;9:1535.

    PubMed Central  PubMed  Google Scholar 

  40. •• Rodero MP, Tesser A, Bartok E, et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat Commun. 2017;8:2176 The first description of a new type I interferonopathy due to autosomal recessive mutations in DNase II causing severe neonatal anaemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies.

    PubMed Central  PubMed  Google Scholar 

  41. Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science. 2001;292:1546–9.

    CAS  PubMed  Google Scholar 

  42. Yoshida H, Okabe Y, Kawane K, Fukuyama H, Nagata S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat Immunol. 2005;6:49–56.

    CAS  PubMed  Google Scholar 

  43. Jang M-A, Kim EK, Now H, Nguyen NTH, Kim WJ, Yoo JY, et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet. 2015;96:266–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ferreira CR, Crow YJ, Gahl WA, Gardner PJ, Goldbach-Mansky R, Hur S, et al. DDX58 and classic Singleton-Merten syndrome. J Clin Immunol. 2019;39:75–80.

    PubMed  Google Scholar 

  45. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.

    CAS  PubMed  Google Scholar 

  46. Starokadomskyy P, Gemelli T, Rios JJ, Xing C, Wang RC, Li H, et al. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17:495–504.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Partington MW, Marriott PJ, Prentice RS, Cavaglia A, Simpson NE. Familial cutaneous amyloidosis with systemic manifestations in males. Am J Med Genet. 1981;10:65–75.

    CAS  PubMed  Google Scholar 

  48. Partington MW, Prentice RS. X-linked cutaneous amyloidosis: further clinical and pathological observations. Am J Med Genet. 1989;32:115–9.

    CAS  PubMed  Google Scholar 

  49. Anderson RC, Zinn AR, Kim J, Carder KR. X-linked reticulate pigmentary disorder with systemic manifestations: report of a third family and literature review. Pediatr Dermatol. 2005;22:122–6.

    PubMed  Google Scholar 

  50. Fernandez-Guarino M, Torrelo A, Fernandez-Lorente M, Fraile G, García-Sagredo JM, Jaén P. X-linked reticulate pigmentary disorder: report of a new family. Eur J Dermatol. 2008;18:102–3.

    PubMed  Google Scholar 

  51. Mégarbané H, Boehm N, Chouery E, Bernard R, Salem N, Halaby E, et al. X-linked reticulate pigmentary layer. Report of a new patient and demonstration of a skewed X-inactivation. Genet Couns. 2005;16:85–9.

    PubMed  Google Scholar 

  52. Kim BS, Seo S-H, Jung HD, Kwon K-S, Kim M-B. X-linked reticulate pigmentary disorder in a female patient. Int J Dermatol. 2010;49:421–5.

    PubMed  Google Scholar 

  53. Pezzani L, Brena M, Callea M, Colombi M, Tadini G. X-linked reticulate pigmentary disorder with systemic manifestations: a new family and review of the literature. Am J Med Genet A. 2013;161A:1414–20.

    PubMed  Google Scholar 

  54. Starokadomskyy P, Sifuentes-Dominguez L, Gemelli T, Zinn AR, Dossi MT, Mellado C, et al. Evolution of the skin manifestations of X-linked pigmentary reticulate disorder. Br J Dermatol. 2017;177(5):e200–1. https://doi.org/10.1111/bjd.15586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Meyts I, Casanova J-L. A human inborn error connects the α’s. Nat Immunol. 2016;17:472–4.

    CAS  PubMed  Google Scholar 

  56. •• Dhir A, Dhir S, Borowski LS, et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature. 2018;560:238–42 The first description of a link between mitochondrial double-stranded RNA and MDA5-dependent type I interferon pathway activation.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. von Ameln S, Wang G, Boulouiz R, et al. A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet. 2012;91:919–27.

    Google Scholar 

  58. Vedrenne V, Gowher A, De Lonlay P, et al. Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet. 2012;91:912–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, et al. Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet. 2015;88:468–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Alodaib A, Sobreira N, Gold WA, Riley LG, Van Bergen NJ, Wilson MJ, et al. Whole-exome sequencing identifies novel variants in PNPT1 causing oxidative phosphorylation defects and severe multisystem disease. Eur J Hum Genet. 2016;25:79–84.

    PubMed Central  PubMed  Google Scholar 

  61. Matilainen S, Carroll CJ, Richter U, Euro L, Pohjanpelto M, Paetau A, et al. Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome. Hum Mol Genet. 2017;26:3352–61.

    CAS  PubMed  Google Scholar 

  62. Eaton A, Bernier FP, Goedhart C, Caluseriu O, Lamont RE, Boycott KM, et al. Is PNPT1-related hearing loss ever non-syndromic? Whole exome sequencing of adult siblings expands the natural history of PNPT1-related disorders. Am J Med Genet A. 2018;176:2487–93.

    CAS  PubMed  Google Scholar 

  63. Sato R, Arai-Ichinoi N, Kikuchi A, Matsuhashi T, Numata-Uematsu Y, Uematsu M, et al. Novel biallelic mutations in the PNPT1 gene encoding a mitochondrial-RNA-import protein PNPase cause delayed myelination. Clin Genet. 2018;93:242–7.

    CAS  PubMed  Google Scholar 

  64. Meuwissen MEC, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. 2016;213:1163–74.

    PubMed Central  PubMed  Google Scholar 

  65. Malakhova OA, Kim KI, Luo J-K, Zou W, Kumar KGS, Fuchs SY, et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 2006;25:2358–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhang D, Zhang D-E. Interferon-stimulated gene 15 and the protein ISGylation system. J Interf Cytokine Res. 2011;31:119–30.

    CAS  Google Scholar 

  67. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337:1684–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C, et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature. 2015;517:89–93.

    CAS  PubMed  Google Scholar 

  69. Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Eckard SC, Rice GI, Fabre A, Badens C, Gray EE, Hartley JL, et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol. 2014;15:839–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hartley JL, Zachos NC, Dawood B, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology. 2010;138:2388–98 2398.e1.

    CAS  PubMed  Google Scholar 

  72. Bourgeois P, Esteve C, Chaix C, Béroud C, Lévy N, THES clinical consortium, et al. Tricho-hepato-enteric syndrome mutation update: mutations spectrum of TTC37 and SKIV2L, clinical analysis and future prospects. Hum Mutat. 2018;39:774–89.

    CAS  PubMed  Google Scholar 

  73. Torrelo A. CANDLE syndrome as a paradigm of proteasome-related autoinflammation. Front Immunol. 2017;8:927.

    PubMed Central  PubMed  Google Scholar 

  74. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87:866–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A. 2011;108:14914–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011;121:4150–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 2012;64:895–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2015;125:4196–211.

    PubMed Central  PubMed  Google Scholar 

  79. • Poli MC, Ebstein F, Nicholas SK, et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am J Hum Genet. 2018;102:1126–42 Novel mutations affecting a proteasome assembly component leading to associated with PRAAS phenotype.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. • de Jesus AA, Brehm A, VanTries R, Pillet P, Parentelli A-S, Montealegre Sanchez GA, et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J Allergy Clin Immunol. 2019;143(5):1939–1943.e8. https://doi.org/10.1016/j.jaci.2018.12.1012Novel mutations affecting a proteasome assembly chaperone associated with PRAAS phenotype.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Torrelo A, Patel S, Colmenero I, Gurbindo D, Lendínez F, Hernández A, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol. 2010;62:489–95.

    PubMed  Google Scholar 

  82. Yamazaki-Nakashimada MA, Santos-Chávez EE, de Jesus AA, Rivas-Larrauri F, Guzmán-Martínez MN, Goldbach-Mansky R, et al. Systemic autoimmunity in a patient with CANDLE syndrome. J Investig Allergol Clin Immunol. 2019;29:75–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169:792–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Watkin LB, Jessen B, Wiszniewski W, et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet. 2015;47:654–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Vece TJ, Watkin LB, Nicholas S, et al. Copa syndrome: a novel autosomal dominant immune dysregulatory disease. J Clin Immunol. 2016;36:377–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Jensson BO, Hansdottir S, Arnadottir GA, Sulem G, Kristjansson RP, Oddsson A, et al. COPA syndrome in an Icelandic family caused by a recurrent missense mutation in COPA. BMC Med Genet. 2017;18:129.

    PubMed Central  PubMed  Google Scholar 

  87. • Volpi S, Tsui J, Mariani M, Pastorino C, Caorsi R, Sacco O, et al. Type I interferon pathway activation in COPA syndrome. Clin Immunol. 2018;187:33–6 The first report of interferon pathway activation in COPA syndrome.

    CAS  PubMed  Google Scholar 

  88. Noorelahi R, Perez G, Otero HJ. Imaging findings of COPA syndrome in a 12-year-old boy. Pediatr Radiol. 2018;48:279–82.

    PubMed  Google Scholar 

  89. Taveira-DaSilva AM, Markello TC, Kleiner DE, Jones AM, Groden C, Macnamara E, et al. Expanding the phenotype of COPA syndrome: a kindred with typical and atypical features. J Med Genet. 2018;56:778–82. https://doi.org/10.1136/jmedgenet-2018-105560.

    Article  CAS  PubMed  Google Scholar 

  90. Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. 2013;14:382–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Arakel EC, Schwappach B. Formation of COPI-coated vesicles at a glance. J Cell Sci. 2018;131:jcs209890. https://doi.org/10.1242/jcs.209890.

    Article  PubMed  Google Scholar 

  92. • Frémond M-L, Legendre M, Fayon M, et al. Use of ruxolitinib in COPA syndrome manifesting as life-threatening alveolar haemorrhage. Thorax. 2020;75:92–5 The first promising use of JAK inhibition in alveolar haemorrhage due to COPA syndrome.

    PubMed  Google Scholar 

  93. Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol. 2014;192:5459–68.

    CAS  PubMed  Google Scholar 

  94. •• Mathian A, Mouries-Martin S, Dorgham K, et al. Ultrasensitive serum interferon-α quantification during SLE remission identifies patients at risk for relapse. Ann Rheum Dis. 2019;78:1669–76 Simoa technique for interferon assessment as a new tool for monitoring systemic lupus activity and risk for relapse.

    CAS  PubMed  Google Scholar 

  95. Troedson C, Wong M, Dalby-Payne J, Wilson M, Dexter M, Rice GI, et al. Systemic lupus erythematosus due to C1q deficiency with progressive encephalopathy, intracranial calcification and acquired Moyamoya cerebral vasculopathy. Lupus. 2013;22:639–43.

    CAS  PubMed  Google Scholar 

  96. Lood C, Gullstrand B, Truedsson L, Olin AI, Alm GV, Rönnblom L, et al. C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum. 2009;60:3081–90.

    CAS  PubMed  Google Scholar 

  97. Santer DM, Hall BE, George TC, Tangsombatvisit S, Liu CL, Arkwright PD, et al. C1q deficiency leads to the defective suppression of IFN-alpha in response to nucleoprotein containing immune complexes. J Immunol. 2010;185:4738–49.

    CAS  PubMed  Google Scholar 

  98. Schorr S, Legum C, Ochshorn M. Spondyloenchondrodysplasia. Enchondromatomosis with severe platyspondyly in two brothers. Radiology. 1976;118:133–9.

    CAS  PubMed  Google Scholar 

  99. Frydman M, Bar-Ziv J, Preminger-Shapiro R, Brezner A, Brand N, Ben-Ami T, et al. Possible heterogeneity in spondyloenchondrodysplasia: quadriparesis, basal ganglia calcifications, and chondrocyte inclusions. Am J Med Genet. 1990;36:279–84.

    CAS  PubMed  Google Scholar 

  100. Renella R, Schaefer E, LeMerrer M, Alanay Y, Kandemir N, Eich G, et al. Spondyloenchondrodysplasia with spasticity, cerebral calcifications, and immune dysregulation: clinical and radiographic delineation of a pleiotropic disorder. Am J Med Genet A. 2006;140:541–50.

    PubMed  Google Scholar 

  101. Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43:127–31.

    CAS  PubMed  Google Scholar 

  102. Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, de Laet C, et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet. 2011;43:132–7.

    CAS  PubMed  Google Scholar 

  103. Briggs TA, Rice GI, Adib N, Ades L, Barete S, Baskar K, et al. Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J Clin Immunol. 2016;36:220–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. An J, Briggs TA, Dumax-Vorzet A, Alarcón-Riquelme ME, Belot A, Beresford M, et al. Tartrate-resistant acid phosphatase deficiency in the predisposition to systemic lupus erythematosus. Arthritis Rheum. 2017;69:131–42.

    CAS  Google Scholar 

  105. Tonduti D, Orcesi S, Jenkinson EM, Dorboz I, Renaldo F, Panteghini C, et al. Clinical, radiological and possible pathological overlap of cystic leukoencephalopathy without megalencephaly and Aicardi-Goutières syndrome. Eur J Paediatr Neurol. 2016;20:604–10.

    PubMed  Google Scholar 

  106. Frémond M-L, Melki I, Kracker S, Bondet V, Duffy D, Rice GI, et al. Comment on: “Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors” by Giannelou et al: mutations in TRNT1 result in a constitutive activation of type I interferon signalling. Ann Rheum Dis. 2019;78:e86.

    PubMed  Google Scholar 

  107. Enns GM, Shashi V, Bainbridge M, Gambello MJ, Zahir FR, Bast T, et al. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet Med. 2014;16:751–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lam C, Ferreira C, Krasnewich D, Toro C, Latham L, Zein WM, et al. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet Med. 2017;19:160–8.

    CAS  PubMed  Google Scholar 

  109. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370:911–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370:921–31.

    PubMed  Google Scholar 

  111. Sönmez HE, Karaaslan C, de Jesus AA, Batu ED, Anlar B, Sözeri B, et al. A clinical score to guide in decision making for monogenic type I IFNopathies. Pediatr Res. 2019;87:745–52. https://doi.org/10.1038/s41390-019-0614-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kuri T, Habjan M, Penski N, Weber F. Species-independent bioassay for sensitive quantification of antiviral type I interferons. Virol J. 2010;7:50.

    PubMed Central  PubMed  Google Scholar 

  113. Hua J, Kirou K, Lee C, Crow MK. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 2006;54:1906–16.

    CAS  PubMed  Google Scholar 

  114. Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Elevated serum interferon-alpha activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60:1815–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Seo Y-J, Kim G-H, Kwak H-J, Nam J-S, Lee HJ, Suh S-K, et al. Validation of a HeLa Mx2/Luc reporter cell line for the quantification of human type I interferons. Pharmacology. 2009;84:135–44.

    CAS  PubMed  Google Scholar 

  116. Li Y, Lee PY, Kellner ES, Paulus M, Switanek J, Xu Y, et al. Monocyte surface expression of Fcgamma receptor RI (CD64), a biomarker reflecting type-I interferon levels in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R90.

    PubMed Central  PubMed  Google Scholar 

  117. Berger Rentsch M, Zimmer G. A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon. PLoS One. 2011;6:e25858.

    PubMed Central  PubMed  Google Scholar 

  118. Lebon P, Ponsot G, Aicardi J, Goutières F, Arthuis M. Early intrathecal synthesis of interferon in herpes encephalitis. Biomedicine. 1979;31:267–71.

    CAS  PubMed  Google Scholar 

  119. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197:711–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Rice GI, Forte GMA, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12:1159–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. • Kim H, de Jesus AA, Brooks SR, Liu Y, Huang Y, VanTries R, et al. Development of a validated interferon score using NanoString technology. J Interf Cytokine Res. 2018;38:171–85 NanoString technology for a new larger interferon score in type I interferonopathies.

    CAS  Google Scholar 

  123. • de Jesus AA, Hou Y, Brooks S, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2019;130(4):1669–82. https://doi.org/10.1172/JCI129301Description of the combine use of type I interferon response gene signature and cytokine profiling to identify distinct patterns of autoinflammatory diseases.

    Article  Google Scholar 

  124. •• Rice GI, Meyzer C, Bouazza N, et al. Reverse-transcriptase inhibitors in the Aicardi–Goutières syndrome. N Engl J Med. 2018;379:2275–7 Proof of concept for therapeutic use of reverse-transcriptase inhibitors in Aicardi–Goutières syndrome.

    PubMed  Google Scholar 

  125. •• Frémond M-L, Rodero MP, Jeremiah N, et al. Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J Allergy Clin Immunol. 2016;138:1752–5 The first report of efficient use of JAK inhibition in SAVI patients.

    PubMed  Google Scholar 

  126. •• Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128:3041–52 JAK-inhibition for efficient treatment of type I interferonopathies (SAVI, PRAAS, and other).

    PubMed Central  PubMed  Google Scholar 

  127. • Alsohime F, Martin-Fernandez M, Temsah M-H, et al. JAK inhibitor therapy in a child with inherited USP18 deficiency. N Engl J Med. 2020;382:256–65 The first promising use of JAK-inhibitor in USP18 deficiency, a severe type I interferonpathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Volpi S, Insalaco A, Caorsi R, Santori E, Messia V, Sacco O, et al. Efficacy and adverse events during janus kinase inhibitor treatment of SAVI syndrome. J Clin Immunol. 2019;39:476–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Omarjee O, Picard C, Frachette C, Moreews M, Rieux-Laucat F, Soulas-Sprauel P, et al. Monogenic lupus: dissecting heterogeneity. Autoimmun Rev. 2019;18:102361.

    PubMed  Google Scholar 

  130. •• Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:222–31 Efficient use of JAK inhibition in systemic lupus erythematosus.

    CAS  PubMed  Google Scholar 

  131. • Melki I, Devilliers H, Gitiaux C, et al. Circulating interferon-α measured with a highly sensitive assay as a biomarker for juvenile inflammatory myositis activity: comment on the article by Mathian et al. Arthritis Rheum. 2020;72:195–7 Interferon alpha assessment with Simoa associated with disease activity in juvenile dermatomyositis.

    Google Scholar 

  132. •• Ladislau L, Suárez-Calvet X, Toquet S, et al. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain. 2018;141:1609–21 Proof of concept of efficient use of JAK inhibition in dermatomyositis.

    PubMed  Google Scholar 

  133. Aeschlimann FA, Frémond M-L, Duffy D, Rice GI, Charuel JL, Bondet V, et al. A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain. 2018;141:e80.

    PubMed  Google Scholar 

  134. Chen Z, Wang X, Ye S. Tofacitinib in amyopathic dermatomyositis-associated interstitial lung disease. N Engl J Med. 2019;381:291–3.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yanick J Crow, Brigitte Bader-Meunier and Bénédicte Neven for their insights, expert assistance and the pictures they have provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Melki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Rheumatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melki, I., Frémond, ML. Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics. Curr Rheumatol Rep 22, 32 (2020). https://doi.org/10.1007/s11926-020-00909-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00909-4

Keywords

Navigation