Skip to main content

Advertisement

Log in

Monogenic Lupus

  • Systemic Lupus Erythematosus (G Tsokos, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease known for its clinical heterogeneity. Over time, new insights into the complex genetic origin of SLE have started to explain some of this clinical variability. These findings, reviewed here, have also yielded important understanding in the immune mechanisms behind SLE pathogenesis.

Recent Findings

Several new monogenic disorders with lupus-like phenotype have been described. These can be organized into physiologic pathways that parallel mechanisms of disease in SLE. Examples include genes important for DNA damage repair (e.g., TREX1), nucleic acid sensing and type I interferon overproduction (e.g., STING, TREX1), apoptosis (FASLG), tolerance (PRKCD), and clearance of self-antigen (DNASE1L3).

Summary

Further study of monogenic lupus may lead to better genotype/phenotype correlations in SLE. Eventually, the ability to understand individual patients according to their genetic profile may allow the development of more targeted and personalized approaches to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110–21. doi:10.1056/NEJMra1100359.

    Article  CAS  PubMed  Google Scholar 

  2. Marlow AA, Peabody Jr HD, Nickel WR. Familial occurrence of systemic lupus erthematosus. JAMA. 1960;173:1641–3.

    Article  CAS  PubMed  Google Scholar 

  3. Moncada B, Day NK, Good RA, Windhorst DB. Lupus-erythematosus-like syndrome with a familial defect of complement. N Engl J Med. 1972;286:689–93. doi:10.1056/NEJM197203302861304.

    Article  CAS  PubMed  Google Scholar 

  4. Agnello V, De Bracco MM, Kunkel HG. Hereditary C2 deficiency with some manifestations of systemic lupus erythematosus. J Immunol. 1972;108:837–40.

    CAS  PubMed  Google Scholar 

  5. Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324.

    Article  CAS  PubMed  Google Scholar 

  6. Wu YL, Brookshire BP, Verani RR, Arnett FC, Yu CY. Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus. 2011;20:1126–34. doi:10.1177/0961203311404914.

    Article  CAS  PubMed  Google Scholar 

  7. Amano MT et al. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene. Mol Immunol. 2008;45:1693–702. doi:10.1016/j.molimm.2007.09.034.

    Article  CAS  PubMed  Google Scholar 

  8. Wahl R et al. C2 deficiency and a lupus erythematosus-like illness: family re-evaluation. Ann Intern Med. 1979;90:717–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kemp ME, Atkinson JP, Skanes VM, Levine RP, Chaplin DD. Deletion of C4A genes in patients with systemic lupus erythematosus. Arthritis Rheum. 1987;30:1015–22.

    Article  CAS  PubMed  Google Scholar 

  10. Rieux-Laucat F et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268:1347–9.

    Article  CAS  PubMed  Google Scholar 

  11. Del-Rey M et al. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood. 2006;108:1306–12. doi:10.1182/blood-2006-04-015776.

    Article  CAS  PubMed  Google Scholar 

  12. Wu J et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest. 1996;98:1107–13. doi:10.1172/JCI118892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasutomo K et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28:313–4. doi:10.1038/91070.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Mayouf SM et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;43:1186–8. doi:10.1038/ng.975.

    Article  CAS  PubMed  Google Scholar 

  15. Lee-Kirsch MA et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med (Berl). 2007;85:531–7. doi:10.1007/s00109-007-0199-9.

    Article  CAS  Google Scholar 

  16. Ellyard JI et al. Whole exome sequencing in early-onset cerebral SLE identifies a pathogenic variant in TREX1. Arthritis Rheumatol. 2014. doi:10.1002/art.38824.

    PubMed  Google Scholar 

  17. Liu Y et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371:507–18. doi:10.1056/NEJMoa1312625.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Konig N et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2016. doi:10.1136/annrheumdis-2016-209841.

    Google Scholar 

  19. Rice GI et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41:829–32. doi:10.1038/ng.373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramantani G et al. Aicardi-Goutieres syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J Child Neurol. 2011;26:1425–8. doi:10.1177/0883073811408310.

    Article  PubMed  Google Scholar 

  21. Rice GI et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243–8. doi:10.1038/ng.2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rice GI et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46:503–9. doi:10.1038/ng.2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crow YJ et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet. 2006;38:910–6. doi:10.1038/ng1842.

    Article  CAS  PubMed  Google Scholar 

  24. Massaad MJ, et al. The base excision repair enzyme NEIL3 protects against autoimmunity. J Clin Invest. 2016; in press.

  25. Briggs TA et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43:127–31. doi:10.1038/ng.748.

    Article  CAS  PubMed  Google Scholar 

  26. Belot A et al. Protein kinase cdelta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65:2161–71. doi:10.1002/art.38008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walter JE et al. Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J Allergy Clin Immunol. 2014. doi:10.1016/j.jaci.2014.07.063.

    Google Scholar 

  28. Bader-Meunier B et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum. 2013;43:217–9. doi:10.1016/j.semarthrit.2013.04.009.

    Article  PubMed  Google Scholar 

  29. Leventopoulos G, Denayer E, Makrythanasis P, Papapolychroniou C, Fryssira H. Noonan syndrome and systemic lupus erythematosus in a patient with a novel KRAS mutation. Clin Exp Rheumatol. 2010;28:556–7.

    CAS  PubMed  Google Scholar 

  30. Butbul Aviel Y et al. Prolidase deficiency associated with systemic lupus erythematosus (SLE): single site experience and literature review. Pediatr Rheumatol Online J. 2012;10:18. doi:10.1186/1546-0096-10-18.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bryan AR, Wu EY. Complement deficiencies in systemic lupus erythematosus. Curr Allergy Asthma Rep. 2014;14:448. doi:10.1007/s11882-014-0448-2.

    Article  PubMed  Google Scholar 

  32. Xiang N, Li XM, Wang GS, Tao JH, Li XP. Association of Fas gene polymorphisms with systemic lupus erythematosus: a meta-analysis. Mol Biol Rep. 2013;40:407–15. doi:10.1007/s11033-012-2075-0.

    Article  CAS  PubMed  Google Scholar 

  33. Gulinello M, Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:207504. doi:10.1155/2011/207504.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Napirei M et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet. 2000;25:177–81. doi:10.1038/76032.

    Article  CAS  PubMed  Google Scholar 

  35. Chitrabamrung S, Rubin RL, Tan EM. Serum deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol Int. 1981;1:55–60.

    Article  CAS  PubMed  Google Scholar 

  36. Sisirak V et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell. 2016;166:88–101. doi:10.1016/j.cell.2016.05.034.

    Article  CAS  PubMed  Google Scholar 

  37. Lee-Kirsch MA et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet. 2006;79:731–7. doi:10.1086/507848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hedrich CM et al. Chilblain lupus erythematosus-a review of literature. Clin Rheumatol. 2008;27:1341. doi:10.1007/s10067-008-0975-0.

    Article  PubMed  Google Scholar 

  39. Tolmie JL, Shillito P, Hughes-Benzie R, Stephenson JB. The Aicardi-Goutieres syndrome (familial, early onset encephalopathy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis). J Med Genet. 1995;32:881–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crow YJ et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38:917–20. doi:10.1038/ng1845.

    Article  CAS  PubMed  Google Scholar 

  41. Rice G et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet. 2007;80:811–5. doi:10.1086/513443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peschke K et al. Deregulated type I IFN response in TREX1-associated familial chilblain lupus. J Invest Dermatol. 2014;134:1456–9. doi:10.1038/jid.2013.496.

    Article  CAS  PubMed  Google Scholar 

  43. Lee-Kirsch MA et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–7. doi:10.1038/ng2091.

    Article  CAS  PubMed  Google Scholar 

  44. Namjou B et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12:270–9. doi:10.1038/gene.2010.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chowdhury D et al. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell. 2006;23:133–42. doi:10.1016/j.molcel.2006.06.005.

    Article  CAS  PubMed  Google Scholar 

  46. Yang YG, Lindahl T, Barnes DE. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell. 2007;131:873–86. doi:10.1016/j.cell.2007.10.017.

    Article  CAS  PubMed  Google Scholar 

  47. Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134:587–98. doi:10.1016/j.cell.2008.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peschke K et al. Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity. J Immunol. 2016;197:2157–66. doi:10.4049/jimmunol.1600722.

    Article  CAS  PubMed  Google Scholar 

  49. Gall A et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012;36:120–31. doi:10.1016/j.immuni.2011.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crow YJ et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A. 2015;167A:296–312. doi:10.1002/ajmg.a.36887.

    Article  PubMed  Google Scholar 

  51. Pizzi S et al. Reduction of hRNase H2 activity in Aicardi-Goutieres syndrome cells leads to replication stress and genome instability. Hum Mol Genet. 2015;24:649–58. doi:10.1093/hmg/ddu485.

    Article  CAS  PubMed  Google Scholar 

  52. Kono M et al. Dyschromatosis Symmetrica Hereditaria and Aicardi-Goutieres Syndrome 6 Are Phenotypic Variants Caused by ADAR1 Mutations. J Invest Dermatol. 2016;136:875–8. doi:10.1016/j.jid.2015.12.034.

    Article  CAS  PubMed  Google Scholar 

  53. Rutsch F et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet. 2015;96:275–82. doi:10.1016/j.ajhg.2014.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ballana E, Este JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol. 2015;23:680–92. doi:10.1016/j.tim.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  55. An J et al. Tartrate-Resistant Acid Phosphatase Deficiency in the Predisposition to Systemic Lupus Erythematosus. Arthritis Rheumatol. 2016. doi:10.1002/art.39810.

    Google Scholar 

  56. Mecklenbrauker I, Saijo K, Zheng NY, Leitges M, Tarakhovsky A. Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature. 2002;416:860–5. doi:10.1038/416860a.

    Article  PubMed  Google Scholar 

  57. Walter JE et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest. 2015;125:4135–48. doi:10.1172/JCI80477.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Notarangelo LD, Kim MS, Walter JE, Lee YN. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16:234–46. doi:10.1038/nri.2016.28.

    Article  CAS  PubMed  Google Scholar 

  59. Lisbona MP, Moreno M, Orellana C, Gratacos J, Larrosa M. Noonan syndrome associated with systemic lupus erythematosus. Lupus. 2009;18:267–9. doi:10.1177/0961203308094996.

    Article  CAS  PubMed  Google Scholar 

  60. Martin DM, Gencyuz CF, Petty EM. Systemic lupus erythematosus in a man with Noonan syndrome. Am J Med Genet. 2001;102:59–62.

    Article  CAS  PubMed  Google Scholar 

  61. Mor A, Philips MR, Pillinger MH. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin Immunol. 2007;125:215–23. doi:10.1016/j.clim.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  62. Deng C et al. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum. 2001;44:397–407. doi:10.1002/1529-0131(200102)44:2<397::AID-ANR59>3.0.CO;2-N.

    Article  CAS  PubMed  Google Scholar 

  63. Coit P et al. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J Autoimmun. 2015;58:59–66. doi:10.1016/j.jaut.2015.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klar A et al. Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur J Pediatr. 2010;169:727–32. doi:10.1007/s00431-009-1102-1.

    Article  PubMed  Google Scholar 

  65. Lubick KJ et al. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe. 2015;18:61–74. doi:10.1016/j.chom.2015.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aoki M et al. Lysinuric protein intolerance in siblings: complication of systemic lupus erythematosus in the elder sister. Eur J Pediatr. 2001;160:522–3.

    Article  CAS  PubMed  Google Scholar 

  67. De Ravin SS et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol. 2008;122:1097–103. doi:10.1016/j.jaci.2008.07.050.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schepp J et al. Deficiency of Adenosine Deaminase 2 Causes Antibody Deficiency. J Clin Immunol. 2016;36:179–86. doi:10.1007/s10875-016-0245-x.

    Article  CAS  PubMed  Google Scholar 

  69. Manolio TA et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53. doi:10.1038/nature08494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindy S. Lo.

Ethics declarations

Conflict of Interest

Dr. Lo declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systemic Lupus Erythematosus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, M.S. Monogenic Lupus. Curr Rheumatol Rep 18, 71 (2016). https://doi.org/10.1007/s11926-016-0621-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0621-9

Keywords

Navigation