Skip to main content

Advertisement

Log in

Emerging Therapies in Antiphospholipid Syndrome

  • Antiphospholipid Syndrome (S Zuily, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Antiphospholipid syndrome (APS) is a hypercoagulable state characterized by arterial and venous thromboses and pregnancy morbidity in the presence of antiphospholipid antibodies. Although warfarin remains the main therapeutic choice in APS, there is still concern about its efficacy, safety, and patient compliance. Patients with refractory APS to conventional therapy as well as patients with non-classical manifestations of APS may have alternative treatment approaches. APS pathogenesis has been further elucidated over the past years identifying new molecules as potential new treatment targets. This review summarizes available data from in vitro and animal models and clinical studies on the role of new potential treatment approaches including new oral anticoagulants and immunoregulatory agents: direct thrombin or factor Xa inhibitors, hydroxychloroquine, statins, B cell inhibition, complement inhibition, peptide therapy, nuclear factor κB and p38 mitogen-activated kinase inhibitors, defibrotide, abciximab, mTOR inhibitor, and other potential targets. Large multicenter prospective studies of well-characterized APS patients are needed to assess the efficacy and safety profile of these potential treatment alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Giannakopoulos B, Krilis SA. How I treat the antiphospholipid syndrome. Blood. 2009;114:2020–3.

    Article  CAS  PubMed  Google Scholar 

  2. Erkan D, Aguiar CL, Andrade D, et al. 14th International Congress on Antiphospholipid Antibodies: task force report on antiphospholipid syndrome treatment trends. Autoimmun Rev. 2014;13:685–9. This is a systematic review of potential future treatment strategies for antiphospholipid positive patients that includes recommendations for clinicians based on literature review and experts opinion.

    Article  CAS  PubMed  Google Scholar 

  3. Chighizola CB, Raschi E, Borghi MO, et al. Update on the pathogenesis and treatment of the antiphospholipid syndrome. Curr Opin Rheumatol. 2015;27:476–82.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman R, Brenner B. The promise of novel direct oral anticoagulants. Best Pract Res Clin Haematol. 2012;25:351–60.

    Article  CAS  PubMed  Google Scholar 

  5. Arachchillage DJ, Cohen H. Use of new oral anticoagulants in antiphospholipid syndrome. Curr Rheumatol Rep. 2013;15:331.

    Article  PubMed  Google Scholar 

  6. Schaefer JK, McBane RD, Black DF, et al. Failure of dabigatran and rivaroxaban to prevent thromboembolism in antiphospholipid syndrome: a case series of three patients. Thromb Haemost. 2014;112:947–50.

    Article  PubMed  Google Scholar 

  7. Noel N, Dutasta F, Costedoat-Chalumeau N, et al. Safety and efficacy of oral direct inhibitors of thrombin and factor Xa in antiphospholipid syndrome. Autoimmun Rev. 2015;14:680–5. This is the first retrospective observational cases series which examined the safety and efficacy of new oral anticoagulants in APS.

    Article  CAS  PubMed  Google Scholar 

  8. Win K, Rodgers GM. New oral anticoagulants may not be effective to prevent venous thromboembolism in patients with antiphospholipid syndrome. Am J Hematol. 2014;89:1017.

    Article  CAS  PubMed  Google Scholar 

  9. Signorelli F, Nogueira F, Domingues V, Mariz HA, Levy RA. Thrombotic events in patients with antiphospholipid syndrome treated with rivaroxaban: a series of eight cases. Clin Rheumatol. 2015 Jul 30.

  10. Cohen H, Doré CJ, Clawson S, RAPS Trial Protocol Collaborators, et al. Rivaroxaban in antiphospholipid syndrome (RAPS) protocol: a prospective, randomized controlled phase II/III clinical trial of rivaroxaban versus warfarin in patients with thrombotic antiphospholipid syndrome, with or without SLE. Lupus. 2015;24:1087–94. This is the first randomized trial comparing rivaroxaban with warfarin in patients with thrombotic APS. The final results of the trial are pending.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belizna C. Hydroxychloroquine as an anti-thrombotic in antiphospholipid syndrome. Autoimmun Rev. 2015;14:358–62.

    Article  CAS  PubMed  Google Scholar 

  12. Edwards MH, Pierangeli S, Liu X, et al. Hydroxychloroquine reverses thrombogenic properties of antiphospholipid antibodies in mice. Circulation. 1997;96:4380–4.

    Article  CAS  PubMed  Google Scholar 

  13. Rand JH, Wu XX, Quinn AS, et al. Hydroxychloroquine directly reduces the binding of antiphospholipid antibody-beta2-glycoprotein I complexes to phospholipid bilayers. Blood. 2008;112:1687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rand JH, Wu XX, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115:2292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186:4794–804.

    Article  CAS  PubMed  Google Scholar 

  16. Wu XX, Guller S, Rand JH. Hydroxychloroquine reduces binding of antiphospholipid antibodies to syncytiotrophoblasts and restores annexin A5 expression. Am J Obstet Gynecol. 2011;205:576–14.

    PubMed  PubMed Central  Google Scholar 

  17. Marchetti T, Ruffatti A, Wuillemin C, et al. Hydroxychloroquine restores trophoblast fusion affected by antiphospholipid antibodies. J Thromb Haemost. 2014;12:910–20.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson R, Charnley J. Hydroxychloroquine in prophylaxis of pulmonary embolism following hip arthroplasty. Clin Orthop Relat Res. 1979;144:174–7.

    PubMed  Google Scholar 

  19. Kaiser R, Cleveland CM, Criswell LA. Risk and protective factors for thrombosis in systemic lupus erythematosus: results from a large, multi-ethnic cohort. Ann Rheum Dis. 2009;68:238–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tektonidou MG, Laskari K, Panagiotakos DB, et al. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. Arthritis Rheum. 2009;61:29–36.

    Article  PubMed  Google Scholar 

  21. Broder A, Putterman C. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in systemic lupus erythematosus. J Rheumatol. 2013;40:30–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erkan D, Yazici Y, Peterson MG, Sammaritano L, Lockshin MD. A cross-sectional study of clinical thrombotic risk factors and preventive treatments in antiphospholipid syndrome. Rheumatology (Oxford). 2002;41:924–9.

    Article  CAS  Google Scholar 

  23. Erkan D, Lockshin MD, APS ACTION members. APS ACTION—AntiPhospholipid Syndrome Alliance For Clinical Trials and InternatiOnal Networking. Lupus. 2012;21:695–8.

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt-Tanguy A, Voswinkel J, Henrion D, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11:1927–9. The first retrospective observational study showing the antithrombotic role of hydroxychloroquine as additional treatment to anticoagulants in patients with primary APS.

    CAS  PubMed  Google Scholar 

  25. Sciascia S, Hunt BJ, Talavera-Garcia E, et al. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am J Obstet Gynecol. 2015. doi:10.1016/j.ajog.2015.09.078.

    PubMed  Google Scholar 

  26. Mekinian A, Lazzaroni MG, Kuzenko A, SNFMI and the European Forum on Antiphospholipid Antibodies, et al. The efficacy of Hydroxychloroquine for obstetrical outcome in anti-phospholipid syndrome: data from a European multicenter retrospective study. Autoimmun Rev. 2015;14:498–502.

    Article  CAS  PubMed  Google Scholar 

  27. Sciascia S, Branch DW, Levy RA et al. The efficacy of hydroxychloroquine in altering pregnancy outcome in women with antiphospholipid antibodies. Evidence and clinical judgment. Thromb Haemost. 2015;115.

  28. Ferrara DE, Liu X, Espinola RG, et al. Inhibition of the thrombogenic and inflammatory properties of antiphospholipid antibodies by fluvastatin in an in vivo animal model. Arthritis Rheum. 2003;48:3272–9.

    Article  CAS  PubMed  Google Scholar 

  29. Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-beta2-glycoprotein I) antibodies: effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum. 2001;44:2870–8.

    Article  CAS  PubMed  Google Scholar 

  30. Cortellaro M, Cofrancesco E, Arbustini E, et al. Systemic cause of unstable atherosclerotic plaques. Atorvastatin and Thrombogenicity of Carotid Atherosclerotic Plaque (ATROCAP) study group. Lancet. 2000;355:1362–3.

    Article  CAS  PubMed  Google Scholar 

  31. Glynn RJ, Danielson E, Fonseca FA, et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med. 2009;360:1851–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferrara DE, Swerlick R, Casper K, et al. Fluvastatin inhibits up-regulation of tissue factor expression by antiphospholipid antibodies on endothelial cells. J Thromb Haemost. 2004;2:1558–63.

    Article  CAS  PubMed  Google Scholar 

  33. Girardi G. Pravastatin prevents miscarriages in antiphospholipid antibody-treated mice. J Reprod Immunol. 2009;82:126–31.

    Article  CAS  PubMed  Google Scholar 

  34. López-Pedrera C, Ruiz-Limón P, Aguirre MA, et al. Global effects of fluvastatin on the prothrombotic status of patients with antiphospholipid syndrome. Ann Rheum Dis. 2010;70:675–82.

    Article  PubMed  Google Scholar 

  35. Erkan D, Willis R, Murthy VL, et al. A prospective open-label pilot study of fluvastatin on proinflammatory and prothrombotic biomarkers in antiphospholipid antibody positive patients. Ann Rheum Dis. 2014;73:1176–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pons I, Espinosa G, Cervera R. Efficacy and safety of rituximab in the treatment of primary antiphospholipid syndrome: analysis of 24 cases from the bibliography review. Med Clin. 2015;144:97–104.

    Article  Google Scholar 

  37. Ramos-Casals M, Brito-Zerón P, Muñoz S, BIOGEAS study group, et al. A systematic review of the off-label use of biological therapies in systemic autoimmune diseases. Medicine. 2008;87:345–64.

    Article  PubMed  Google Scholar 

  38. Ioannou Y, Lambrianides A, Cambridge G, et al. B cell depletion therapy for patients with systemic lupus erythematosus results in a significant drop in anticardiolipin antibody titres. Ann Rheum Dis. 2008;67:425–6.

    Article  CAS  PubMed  Google Scholar 

  39. Erre GL, Pardini S, Faedda R, et al. Effect of rituximab on clinical and laboratory features of antiphospholipid syndrome: a case report and a review of literature. Lupus. 2008;17:50–5.

    Article  CAS  PubMed  Google Scholar 

  40. Erkan D, Vega J, Ramón G, et al. A pilot open-label phase II trial of rituximab for non-criteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 2013;65:464–71. A prospective pilot study showing a beneficial effect of rituximab in microthrombotic/microangiopathic non-criteria manifestations of APS.

    Article  CAS  PubMed  Google Scholar 

  41. Berman H, Rodríguez-Pintó I, Cervera R, Catastrophic Antiphospholipid Syndrome (CAPS) Registry Project Group (European Forum on Antiphospholipid Antibodies), et al. Rituximab use in the catastrophic antiphospholipid syndrome: descriptive analysis of the CAPS registry patients receiving rituximab. Autoimmun Rev. 2013;12:1085–90.

    Article  CAS  PubMed  Google Scholar 

  42. Rodríguez-Pintó I, Cervera R, Espinosa G. Rituximab and its therapeutic potential in catastrophic antiphospolipid syndrome. Ther Adv Musculoskelet Dis. 2015;7:26–30.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salmon JE, Girardi G, Lockshin MD. The antiphospholipid syndrome as a disorder initiated by inflammation: implications for the therapy of pregnant patients. Nat Clin Pract Rheumatol. 2007;3:140–7.

    Article  CAS  PubMed  Google Scholar 

  44. Ikeda K, Nagasawa K, Horiuchi T, et al. C5a induces tissue factor activity on endothelial cells. Thromb Haemost. 1997;77:394–8.

    CAS  PubMed  Google Scholar 

  45. Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112:1644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Girardi G, Yarilin D, Thurman JM, et al. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203(9):2165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holers VM, Salmon JE, Pickering MC, de Jorge EG, Martinez-Barricarte R, et al. Spontaneous hemolytic uremic syndrome triggered by complement surface recognition domains. J Exp Med. 2007;204:1249–56.

    Article  Google Scholar 

  48. Salmon JE, Heuser C, Triebwasser M et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. Plos Med. 2011;doi: 10.1371.

  49. Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355:1233–43.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370:632–9.

    Article  CAS  PubMed  Google Scholar 

  51. Legendre CM, Licht C, Muus P, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368:2169–81.

    Article  CAS  PubMed  Google Scholar 

  52. Tektonidou MG, Sotsiou F, Moutsopoulos HM. Antiphospholipid syndrome (APS) nephropathy in catastrophic, primary, and systemic lupus erythematosus-related APS. J Rheumatol. 2008;35(10):1983–8.

    CAS  PubMed  Google Scholar 

  53. Canaud G, Kamar N, Anglicheau D, et al. Eculizumab improves posttransplant thrombotic microangiopathy due to antiphospholipid syndrome recurrence but fails to prevent chronic vascular changes. Am J Transplant. 2013;13:2179–85.

    Article  CAS  PubMed  Google Scholar 

  54. Shapira I, Andrade D, Allen SL, Salmon JE. Brief report: induction of sustained remission in recurrent catastrophic antiphospholipid syndrome via inhibition of terminal complement with eculizumab. Arthritis Rheum. 2012;64:2719–23. The first report of the efficacy of eculizumab, an inhibitor of complement activation, in the treatment of CAPS demonstrating the importance of terminal complement components in the pathogenesis of CAPS and the therapeutic benefit of complement inactivation.

    Article  CAS  PubMed  Google Scholar 

  55. Ostertag MV, Liu X, Henderson SS, Pierangeli SS. A peptide that mimics the Vth region of beta-2-glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus. 2006;15:358–65.

    Article  CAS  PubMed  Google Scholar 

  56. Pedrera-Lopez CH, Aguirre MA, Limon-Ruiz P, et al. Immunotherapy in antiphospholipid syndrome. Int Immunopharmacol. 2015;27:200–8.

    Article  Google Scholar 

  57. Ioannou Y, Romay-Penabad Z, Pericleus C, et al. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of beta2-glycoprotein I; proof of concept. J ThrombHaemost. 2009;7:833–42.

    Article  CAS  Google Scholar 

  58. de la Torre YM, Pregnolato F, D’Amelio F, et al. Antiphospholipid-induced murine fetal loss: novel protective effects of a peptide targeting the beta-2 glycoprotein I phospholipid binding site. Implication for human fetal loss. J Autoimmun. 2012;38:209–15.

    Article  Google Scholar 

  59. Di Simone N, D’Ippolito S, Marana R, et al. Antiphospholipid antibodies affect human endometrial angiogenesis protective effect of synthetic peptide (TIFI) mimicking the antiphospholipid binding site of β(2) glycoprotein I. Am J Reprod immunol. 2013;70:299–08.

    Article  PubMed  Google Scholar 

  60. Agostinis C, Durigutto P, Sblattero D, Borghi M, et al. A non-complement-fixing antibody to β2 glycoprotein I as a novel therapy for antiphospholipid syndrome. Blood. 2014;123:3478–87. This study showed that the CH2-deleted antibody may represent an innovative approach to treat patients with APS refractory to standard therapy.

    Article  CAS  PubMed  Google Scholar 

  61. Benhamou Y, Bellien J, Armengol G, Brakenhielm E, et al. Role of toll-like receptors 2 and 4 in mediating endothelial dysfunction and arterial remodeling in primary arterial antiphospholipid syndrome. Arthritis Rheumatol. 2014;66:3210–20.

    Article  CAS  PubMed  Google Scholar 

  62. Comarmond C, Cacoub P. Antiphospholipid syndrome: from pathogenesis to novel immunomodulatory therapies. Autoimmun Rev. 2013;12:752–7.

    Article  CAS  PubMed  Google Scholar 

  63. Kubota T, Fukuya Y, Hashimoto R, et al. Possible involvement of chemokine induced platelet activation in thrombophilic diathesis of antiphospholipid syndrome. Ann N Y Acad Sci. 2009;1173:137–45.

    Article  CAS  PubMed  Google Scholar 

  64. Nishimura M, Nii T, Trimova G, et al. The NF-κβ specific inhibitor DHMEQ prevents thrombus formation in a mouse model of antiphospholipid syndrome. J Nephropathology. 2013;2:114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Damjanov N, Kauffman RS, Spencer-Green GT. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized double-blind, placebo-controlled clinical studies. Arthritis Rheum. 2009;60:1231–41.

    Article  Google Scholar 

  66. Marti V, Seixo F, Santaló M, Serra A. Antiphospholipid syndrome and acute myocardial infarction: treatment with thrombectomy and abciximab. Rev Port Cardiol. 2014;33:7–8.

    Google Scholar 

  67. Chambers Jr JD, Haire HD, Deligonul U. Multiple early percutaneous transluminal coronary angioplasty failures related to lupus anticoagulant. Am Heart J. 1996;132:189–90.

    Article  PubMed  Google Scholar 

  68. Pierangeli SS, Vega-Ostertag M, Harris NE. Intracellular signaling triggered by antiphospholipid antibodies in platelets and endothelial cells: a pathway to targeted therapies. Thromb Res. 2004;114:467–76.

    Article  CAS  PubMed  Google Scholar 

  69. Falanga A, Vignoli A, Marchetti M, Barbui T. Defibrotide reduces procoagulant activity and increase fibrinolytic properties of endothelial cells. Leukemia. 2003;17:1636–42.

    Article  CAS  PubMed  Google Scholar 

  70. Ferrari PA, Cornelli U, Dian F, et al. Defibrotide in the prevention of deep venous thrombosis in general surgery. Preliminary results of a multicenter study. Minerva Med. 1988;79:557–61.

    Google Scholar 

  71. Burcoglu-O’Ral A, Erkan D, Asherson R. Treatment of catastrophic antiphospholipid syndrome with defibrotide, a proposed vascular endothelial cell modulator. J Rheumatol. 2002;29:2006–11.

    PubMed  Google Scholar 

  72. Martin KA, Rzucidlo EM, Merenick BL, Fingar DC, Brown DJ, Wagner RJ, et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol. 2004;286:C507–17.

    Article  CAS  PubMed  Google Scholar 

  73. Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation. 1999;99:2164–70.

    Article  CAS  PubMed  Google Scholar 

  74. Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one year angiographic and intravascular ultrasound follow-up. Circulation. 2001;104:2007–11.

    Article  CAS  PubMed  Google Scholar 

  75. Hughson MD, McCarty GA, Brumback RA. Spectrum of vascular pathology affecting patients with the antiphospholipid syndrome. J Am Soc Nephrol. 2002;13:42–52.

    Google Scholar 

  76. Nochy D, Daugas E, Droz D, et al. The intrarenal vascular lesions associated with primary antiphospholipid syndrome. J Am Soc Nephrol. 1999;10:507–18.

    CAS  PubMed  Google Scholar 

  77. Canaud G, Bienaimé F, Tabarin F, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;371:303–12. This is a recent study that suggests the role of the mTORC pathway in renal APS vascular lesion pathogenesis and the importance of its inhibition.

    Article  PubMed  Google Scholar 

  78. Zuily S, Regnault V, Wahl D. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;16(371):1553–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Tektonidou.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Antiphospholipid Syndrome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, D., Tektonidou, M. Emerging Therapies in Antiphospholipid Syndrome. Curr Rheumatol Rep 18, 22 (2016). https://doi.org/10.1007/s11926-016-0566-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0566-z

Keywords

Navigation