Skip to main content
Log in

Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis

  • Osteoarthritis (MB Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Efforts to reduce the ever-increasing rates of osteoarthritis (OA) in the developed world require the ability to non-invasively detect the degradation of joint tissues before advanced damage has occurred. This is particularly relevant for damage to articular cartilage because this soft tissue lacks the capacity to repair itself following major damage and is essential to proper joint function. While conventional magnetic resonance imaging (MRI) provides sufficient contrast to visualize articular cartilage morphology, more advanced imaging strategies are necessary for understanding the underlying biochemical composition of cartilage that begins to break down in the earliest stages of OA. This review discusses the biochemical basis and the advantages and disadvantages associated with each of these techniques. Recent implementations for these techniques are touched upon, and future considerations for improving the research and clinical power of these imaging technologies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kotlarz H, Gunnarsson CL, Fang H, et al. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum. 2009;60(12):3546–53.

    Article  PubMed  Google Scholar 

  3. Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D662–70.

    Article  PubMed  CAS  Google Scholar 

  4. Boegard T, Rudling O, Petersson IF, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998;57(7):401–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kijowski R, Blankenbaker DG, Stanton PT, et al. Radiographic findings of osteoarthritis versus arthroscopic findings of articular cartilage degeneration in the tibiofemoral joint. Radiology. 2006;239(3):818–24.

    Article  PubMed  Google Scholar 

  6. Hodler J, Resnick D. Current status of imaging of articular cartilage. Skelet Radiol. 1996;25(8):703–9.

    Article  CAS  Google Scholar 

  7. Kaab MJ, Gwynn IA, Notzli HP. Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species. J Anat. 1998;193(Pt 1):23–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Maroudas A, Bayliss MT, Venn MF. Further studies on the composition of human femoral head cartilage. Ann Rheum Dis. 1980;39(5):514–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36(2):121–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    PubMed  CAS  Google Scholar 

  11. Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.

    Article  PubMed  CAS  Google Scholar 

  12. Bashir A, Gray ML, Hartke J, et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.

    Article  PubMed  CAS  Google Scholar 

  13. Watanabe A, Wada Y, Obata T, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201–8.

    Article  PubMed  Google Scholar 

  14. Wiener E, Settles M, Weirich G, et al. The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage. Röfo. 2011;183(3):226–32.

    PubMed  CAS  Google Scholar 

  15. Salo EN, Nissi MJ, Kulmala KA, et al. Diffusion of Gd-DTPA(2)(-) into articular cartilage. Osteoarthr Cartil. 2012;20(2):117–26.

    Article  PubMed  Google Scholar 

  16. Tiderius CJ, Olsson LE, de Verdier H, et al. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med. 2001;46(6):1067–71.

    Article  PubMed  CAS  Google Scholar 

  17. Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  18. Bittersohl B, Hosalkar HS, Werlen S, et al. Intravenous versus intra-articular delayed gadolinium-enhanced magnetic resonance imaging in the hip joint: a comparative analysis. Investig Radiol. 2010;45(9):538–42.

    Article  CAS  Google Scholar 

  19. Sigurdsson U, Siversson C, Lammentausta E, et al. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskelet Disord. 2014;15(1):226.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trattnig S, Marlovits S, Gebetsroither S, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: Preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.

    Article  PubMed  Google Scholar 

  21. McKenzie CA, Williams A, Prasad PV, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 T and 3.0 T. J Magn Reson Imaging. 2006;24(4):928–33.

    Article  PubMed  Google Scholar 

  22. Siversson C, Tiderius CJ, Neuman P, et al. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging. 2010;31(5):1203–9.

    Article  PubMed  Google Scholar 

  23. Bron EE, van Tiel J, Smit H, et al. Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur Radiol. 2013;23(1):246–52.

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Tiel J, Bron EE, Tiderius CJ, et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol. 2013;23(2):496–504.

    Article  PubMed  Google Scholar 

  25. Mamisch TC, Kain MS, Bittersohl B, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in Femoacetabular impingement. J Orthop Res. 2011;29(9):1305–11.

    Article  PubMed  Google Scholar 

  26. Stelzeneder D, Mamisch TC, Kress I, et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthr Cartil. 2012;20(7):661–9.

    Article  PubMed  CAS  Google Scholar 

  27. Williams A, Shetty SK, Burstein D, et al. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal (1CMC) joint: a feasibility study. Osteoarthr Cartil. 2008;16(4):530–2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Neuman P, Tjornstrand J, Svensson J, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury–comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83.

    Article  PubMed  CAS  Google Scholar 

  29. Rutgers M, Bartels LW, Tsuchida AI, et al. dGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study. Osteoarthr Cartil. 2012;20(10):1134–41.

    Article  PubMed  CAS  Google Scholar 

  30. Domayer SE, Trattnig S, Stelzeneder D, et al. Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J Magn Reson Imaging. 2010;31(3):732–9.

    Article  PubMed  Google Scholar 

  31. Vasiliadis HS, Danielson B, Ljungberg M, et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med. 2010;38(5):943–9.

    Article  PubMed  Google Scholar 

  32. Owman H, Ericsson YB, Englund M, et al. Association between delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space narrowing and osteophytes: a cohort study in patients with partial meniscectomy with 11 years of follow-up. Osteoarthritis Cartilage 2014.

  33. Heverhagen JT, Krombach GA, Gizewski E. Application of extracellular gadolinium-based MRI contrast agents and the risk of nephrogenic systemic fibrosis. Röfo. 2014;186(7):661–9.

    PubMed  CAS  Google Scholar 

  34. Dunn TC, Lu Y, Jin H, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    Article  PubMed  Google Scholar 

  35. Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.

    Article  PubMed  Google Scholar 

  36. Keenan KE, Besier TF, Pauly JM, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Wong CS, Yan CH, Gong NJ, et al. Imaging biomarker with T1rho and T2 mappings in osteoarthritis - In vivo human articular cartilage study. Eur J Radiol. 2013;82(4):647–50.

    Article  PubMed  Google Scholar 

  38. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    Article  PubMed  Google Scholar 

  39. Li X, Han ET, Busse RF, et al. In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008;59(2):298–307.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen W, Takahashi A, Han ET. 3D Quantitative Imaging of T1rho and T2. In: 19th, editor. International Society for Magnetic Resonance in Medicine: Annual Meeting & Exhibition; Montréal 2011.

  41. Staroswiecki E, Granlund KL, Alley MT, et al. Simultaneous estimation of T(2) and apparent diffusion coefficient in human articular cartilage in vivo with a modified three-dimensional double echo steady state (DESS) sequence at 3 T. Magn Reson Med. 2012;67(4):1086–96. This work is of major importance because it shows that parametric information from articular cartilage (T2 and diffusion) can be obtained using a standard MR imaging method that is commonly used for cartilage thickness. Hence, one acquisition can show early changes of matrix degeneration and later cartilage loss.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baum T, Stehling C, Joseph GB, et al. Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging. 2012;35(2):370–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pan J, Pialat JB, Joseph T, et al. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiology. 2011;261(2):507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Friedrich KM, Shepard T, de Oliveira VS, et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol. 2009;193(5):W411–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Golditz T, Steib S, Pfeifer K, et al. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes. Osteoarthritis Cartilage 2014.

  46. Marik W, Apprich S, Welsch GH, et al. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3 T MRI: a feasibility study. Eur J Radiol. 2012;81(5):923–7.

    Article  PubMed  CAS  Google Scholar 

  47. Miese FR, Zilkens C, Holstein A, et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol. 2011;52(1):106–10.

    PubMed  Google Scholar 

  48. Dardzinski BJ, Mosher TJ, Li S, et al. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.

    Article  PubMed  CAS  Google Scholar 

  49. Carballido-Gamio J, Blumenkrantz G, Lynch JA, et al. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med. 2010;63(2):465–72.

    Article  PubMed  Google Scholar 

  50. Joseph GB, Baum T, Alizai H, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Shiomi T, Nishii T, Nakata K, et al. Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees. Skelet Radiol. 2013;42(3):363–70.

    Article  Google Scholar 

  52. Eckstein F, Kwoh CK, Link TM, et al. Imaging research results from the Osteoarthritis Initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis. 2014;73(7):1289–300.

    Article  PubMed  Google Scholar 

  53. Hovis KK, Alizai H, Tham SC, et al. Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI). Skelet Radiol. 2012;41(11):1435–43.

    Article  Google Scholar 

  54. Baum T, Joseph GB, Arulanandan A, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55.

    Article  Google Scholar 

  55. Xia Y, Moody JB, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med. 2002;48(3):460–9.

    Article  PubMed  Google Scholar 

  56. Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24(1):1–12.

    Article  PubMed  Google Scholar 

  57. Duvvuri U, Reddy R, Patel SD, et al. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.

    Article  PubMed  CAS  Google Scholar 

  58. Duvvuri U, Kudchodkar S, Reddy R, et al. T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil. 2002;10(11):838–44.

    Article  PubMed  CAS  Google Scholar 

  59. Regatte RR, Akella SV, Borthakur A, et al. Proton spin-lock ratio imaging for quantitation of glycosaminoglycans in articular cartilage. J Magn Reson Imaging. 2003;17(1):114–21.

    Article  PubMed  Google Scholar 

  60. Li X, Cheng J, Lin K, et al. Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Witschey 2nd WR, Borthakur A, Elliott MA, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Duvvuri U, Charagundla SR, Kudchodkar SB, et al. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T–preliminary experience. Radiology. 2001;220(3):822–6.

    Article  PubMed  CAS  Google Scholar 

  63. Regatte RR, Akella SV, Wheaton AJ, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.

    PubMed  Google Scholar 

  64. Witschey WR, Borthakur A, Elliott MA, et al. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging. 2008;28(3):744–54.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Theologis AA, Haughom B, Liang F, et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc. 2013.

  66. Tsushima H, Okazaki K, Takayama Y, et al. Evaluation of cartilage degradation in arthritis using T1rho magnetic resonance imaging mapping. Rheumatol Int. 2012;32(9):2867–75.

    Article  PubMed  CAS  Google Scholar 

  67. Bolbos RI, Ma CB, Link TM, et al. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging. Investig Radiol. 2008;43(11):782–8.

    Article  Google Scholar 

  68. Rakhra KS, Lattanzio PJ, Cardenas-Blanco A, et al. Can T1-rho MRI detect acetabular cartilage degeneration in femoroacetabular impingement?: a pilot study. J Bone Joint Surg (Br). 2012;94(9):1187–92.

    Article  CAS  Google Scholar 

  69. Li X, Ma BC, Bolbos RI, et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging. 2008;28(2):453–61.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Souza RB, Kumar D, Calixto N, et al. Response of knee cartilage T and T relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil. 2014.

  71. Nishioka H, Hirose J, Nakamura E, et al. T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging. 2012;35(1):147–55.

    Article  PubMed  Google Scholar 

  72. Singh A, Haris M, Cai K, et al. High Resolution T1rho Mapping of In Vivo Human Knee Cartilage at 7 T. PLoS One. 2014;9(5):e97486.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pedersen DR, Klocke NF, Thedens DR, et al. Integrating carthage-specific T1rho MRI into knee clinic diagnostic imaging. Iowa Orthop J. 2011;31:99–109.

    PubMed  PubMed Central  Google Scholar 

  74. Granot J. Sodium imaging of human body organs and extremities in vivo. Radiology. 1988;167(2):547–50.

    Article  PubMed  CAS  Google Scholar 

  75. Insko EK, Kaufman JH, Leigh JS, et al. Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med. 1999;41(1):30–4.

    Article  PubMed  CAS  Google Scholar 

  76. Borthakur A, Shapiro EM, Beers J, et al. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil. 2000;8(4):288–93.

    Article  PubMed  CAS  Google Scholar 

  77. Madelin G, Babb J, Xia D, et al. Articular Cartilage: Evaluation with Fluid-suppressed 7.0-T Sodium MR Imaging in Subjects with and Subjects without Osteoarthritis. Radiology 2013.

  78. Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed (2)(3)Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol. 2012;22(6):1341–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gold GE, Hargreaves BA, Stevens KJ, et al. Advanced magnetic resonance imaging of articular cartilage. Orthop Clin N Am. 2006;37(3):331–47. vi.

    Article  Google Scholar 

  80. Du J, Takahashi AM, Chung CB. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging. 2009;29(2):412–21.

    Article  PubMed  Google Scholar 

  81. Du J, Carl M, Bae WC, et al. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthr Cartil. 2013;21(1):77–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Williams A, Qian Y, Chu CR. UTE-T2 * mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthr Cartil. 2011;19(1):84–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Chu CR, Williams AA, West RV, et al. Quantitative Magnetic Resonance Imaging UTE-T2* Mapping of Cartilage and Meniscus Healing After Anatomic Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2014. This work shows that compositional MRI can detect important changes in cartilage and meniscus after joint injury.

  84. Tyler DJ, Robson MD, Henkelman RM, et al. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging. 2007;25(2):279–89.

    Article  PubMed  Google Scholar 

  85. Ling W, Regatte RR, Navon G, et al. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Schmitt B, Zbyn S, Stelzeneder D, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.

    Article  PubMed  Google Scholar 

  87. Krusche-Mandl I, Schmitt B, Zak L, et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil. 2012;20(5):357–63.

    Article  PubMed  CAS  Google Scholar 

  88. Singh A, Haris M, Cai K, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mlynarik V, Sulzbacher I, Bittsansky M, et al. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging. 2003;17(4):440–4.

    Article  PubMed  Google Scholar 

  90. Xia Y, Farquhar T, Burton-Wurster N, et al. Self-diffusion monitors degraded cartilage. Arch Biochem Biophys. 1995;323(2):323–8.

    Article  PubMed  CAS  Google Scholar 

  91. Welsch GH, Trattnig S, Domayer S, et al. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil. 2009;17(9):1219–27.

    Article  PubMed  CAS  Google Scholar 

  92. Friedrich KM, Mamisch TC, Plank C, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation. Eur J Radiol. 2010;73(3):622–8.

    Article  PubMed  Google Scholar 

  93. Zhu SC, Shi DP, Xuan A. Human patellar cartilage: echo planar diffusion-weighted MR imaging findings at 3.0 T. Clin Imaging. 2012;36(3):199–202.

    Article  PubMed  Google Scholar 

  94. Siebelt M, van Tiel J, Waarsing JH, et al. Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthr Cartil. 2011;19(10):1183–9.

    Article  PubMed  CAS  Google Scholar 

  95. Biswas D, Bible JE, Bohan M, et al. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.

    Article  PubMed  Google Scholar 

  96. Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Monu UD, McWalter EJ, Jordan CD, et al. 3D Visualization of Quantitative T2 Relaxation Times in the Femoral Condylar Cartilage in Healthy and ACL-injured Individuals. International Society for Magnetic Resonance In Medicine: Annual Meeting & Exhibition; Milan, Italy2014.

  98. Nishioka H, Hirose J, Nakamura E, et al. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1rho and T2 mapping. Eur J Radiol. 2013.

  99. Prasad AP, Nardo L, Schooler J, et al. T(1)rho and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil. 2013;21(1):69–76. This work shows that compositional mapping in articular cartilage predicts disease progression in osteoarthritis. These methods may be useful to the selection of subjects who are likely to show rapid disease progression for future studies of OA drugs.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Goto H, Iwama Y, Fujii M, et al. A preliminary study of the T1rho values of normal knee cartilage using 3 T-MRI. Eur J Radiol. 2012;81(7):e796–803.

    Article  PubMed  Google Scholar 

  101. McAlindon TE, Nuite M, Krishnan N, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthr Cartil. 2011;19(4):399–405.

    Article  PubMed  CAS  Google Scholar 

  102. Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0 T: parallel changes in T(2), T(1)rho, and dGEMRIC. Acad Radiol. 2014;21(4):463–71.

    Article  PubMed  Google Scholar 

  103. Kurkijarvi JE, Mattila L, Ojala RO, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil. 2007;15(4):372–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Stephen J. Matzat declares the receipt of institutional research grants from GE Healthcare, as well as grants from the NIH.

Feliks Kogan and Grant W. Fong declare the receipt of travel support money, payment for manuscript review, and consulting fees, as well as an institutional grant from GE Healthcare.

Garry E. Gold declares the receipt of consulting fees from Boston Scientific, as well as institutional grants from GE Healthcare and the NIH.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry E. Gold.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matzat, S.J., Kogan, F., Fong, G.W. et al. Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis. Curr Rheumatol Rep 16, 462 (2014). https://doi.org/10.1007/s11926-014-0462-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0462-3

Keywords

Navigation