Skip to main content

Advertisement

Log in

Dendritic Cells: Novel Players in Fibrosis and Scleroderma

  • SCLERODERMA (J VARGA, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Dendritic cells are professional antigen-presenting cells that are most studied for their function in mediating T-cell tolerance and T-cell activation. In addition, recent evidence indicates that dendritic cells can regulate the vasculature and function of fibroblast-type cells. The potential contribution of dendritic cells to scleroderma and fibrosis is not well-understood. In this article, we review recent studies as well as describe our own ongoing work that points toward a role for dendritic cells in scleroderma and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117:557–67.

    Article  PubMed  CAS  Google Scholar 

  2. Maricq HR, LeRoy EC. Patterns of finger capillary abnormalities in connective tissue disease by “wide-field” microscopy. Arthritis Rheum. 1973;16:619–28.

    Article  PubMed  CAS  Google Scholar 

  3. Hettema ME, Zhang D, Stienstra Y, et al. Decreased capillary permeability and capillary density in patients with systemic sclerosis using large-window sodium fluorescein videodensitometry of the ankle. Rheumatology. 2008;47:1409–12.

    Article  PubMed  CAS  Google Scholar 

  4. Fleming JN, Nash RA, McLeod DO, et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One. 2008;3:e1452.

    Article  PubMed  Google Scholar 

  5. Ramos-Casals M, Fonollosa-Pla V, Brito-Zeron P, et al. Targeted therapy for systemic sclerosis: how close are we? Nat Rev Rheumatol. 2010;6:269–78.

    Article  PubMed  CAS  Google Scholar 

  6. Merad M, Manz MG. Dendritic cell homeostasis. Blood. 2009;113:3418–27.

    Article  PubMed  CAS  Google Scholar 

  7. Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science 327:656–61.

  8. Itano AA, Jenkins MK. Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol. 2003;4:733–9.

    Article  PubMed  CAS  Google Scholar 

  9. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151–61.

    Article  PubMed  CAS  Google Scholar 

  10. Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol. 2009;10:1237–44.

    Article  PubMed  CAS  Google Scholar 

  11. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7:311–7.

    Article  PubMed  CAS  Google Scholar 

  12. Serbina NV, Salazar-Mather TP, Biron CA, et al. TNF/INOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19:59–70.

    Article  PubMed  CAS  Google Scholar 

  13. Cheong C, Matos I, Choi JH, et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell. 2010;143:416–29.

    Article  PubMed  CAS  Google Scholar 

  14. Deleuran B, Abraham DJ. Possible implication of the effector CD4+ T-cell subpopulation Th17 in the pathogenesis of systemic scleroderma. Nat Clin Pract Rheumatol. 2007;3:682–3.

    Article  PubMed  CAS  Google Scholar 

  15. Wynn TA. Fibrotic disease and the T(h)1/T(h)2 paradigm. Nat Rev Immunol. 2004;4:583–94.

    Article  PubMed  CAS  Google Scholar 

  16. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Investig. 2007;117:1119–27.

    Article  PubMed  CAS  Google Scholar 

  17. Lambrecht BN, Hammad H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet. 2010;376:835–43.

    Article  PubMed  CAS  Google Scholar 

  18. Hammad H, Plantinga M, Deswarte K, et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207:2097–111.

    Article  PubMed  CAS  Google Scholar 

  19. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  PubMed  CAS  Google Scholar 

  20. Ong VH, Denton CP. Innovative therapies for systemic sclerosis. Curr Opin Rheumatol. 2010;22:264–72.

    Article  PubMed  CAS  Google Scholar 

  21. Helene M, Lake-Bullock V, Zhu J, et al. T cell independence of bleomycin-induced pulmonary fibrosis. J Leukoc Biol. 1999;65:187–95.

    PubMed  CAS  Google Scholar 

  22. Aliprantis AO, Wang J, Fathman JW, et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc Natl Acad Sci. 2007;104:2827–30.

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto T, Nishioka K. Animal model of sclerotic skin. IV: Induction of dermal sclerosis by bleomycin is T cell independent. 2001;117:999–1001.

  24. Saalbach A, Klein C, Sleeman J, et al. Dermal fibroblasts induce maturation of dendritic cells. J Immunol. 2007;178:4966–74.

    PubMed  CAS  Google Scholar 

  25. Kitamura H, Cambier S, Somanath S, et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin alphavbeta8-mediated activation of TGF-beta. J Clin Invest. 2011;121:2863–75.

    Article  PubMed  CAS  Google Scholar 

  26. Sixt M, Kanazawa N, Selg M, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22:19–29.

    Article  PubMed  CAS  Google Scholar 

  27. Bajenoff M, Egen JG, Koo LY, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25:989–1001.

    Article  PubMed  CAS  Google Scholar 

  28. Luther SA, Tang HL, Hyman PL, et al. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci U S A. 2000;97:12694–9.

    Article  PubMed  CAS  Google Scholar 

  29. Link A, Vogt TK, Favre S, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol. 2007;8:1255–65.

    Article  PubMed  CAS  Google Scholar 

  30. Jung S, Unutmaz D, Wong P, et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) t cells by exogenous cell-associated antigens. Immunity. 2002;17:211–20.

    Article  PubMed  CAS  Google Scholar 

  31. Tzeng TC, Chyou S, Tian S, et al. CD11chi dendritic cells regulate the re-establishment of vascular quiescence and stabilization after immune stimulation of lymph nodes. J Immunol. 2010;184:4247–57.

    Article  PubMed  CAS  Google Scholar 

  32. Chyou S, Benahmed F, Lu TT. Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and/or B cells. J Immunol. 2011, in press.

  33. Zhou L, Tedder T. A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood. 1995;86:3295–301.

    PubMed  CAS  Google Scholar 

  34. Gruschwitz MS, Hornstein OP. Expression of transforming growth factor type beta on human epidermal dendritic cells. J Invest Dermatol. 1992;99:114–6.

    Article  PubMed  CAS  Google Scholar 

  35. Fleming JN, Schwartz SM. The pathology of scleroderma vascular disease. Rheum Dis Clin North Am. 2008;34:41–55. vi.

    Article  PubMed  Google Scholar 

  36. Webster B, Ekland EH, Agle LM, et al. Regulation of lymph node vascular growth by dendritic cells. J Exp Med. 2006;203:1903–13.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson ND, Anderson AO, Wyllie RG. Microvascular changes in lymph nodes draining skin allografts. Am J Pathol. 1975;81:131–60.

    PubMed  CAS  Google Scholar 

  38. Plaks V, Birnberg T, Berkutzki T, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 2008;118:3954–65.

    PubMed  CAS  Google Scholar 

  39. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176:1693–702.

    Article  PubMed  CAS  Google Scholar 

  40. Romani N, Reider D, Heuer M, et al. Generation of mature dendritic cells from human blood an improved method with special regard to clinical applicability. J Immunol Methods. 1996;196:137–51.

    Article  PubMed  CAS  Google Scholar 

  41. Morse MA, Zhou LJ, Tedder TF, et al. Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy. Ann Surg. 1997;226:6–16.

    Article  PubMed  CAS  Google Scholar 

  42. • Bar-On L, Zigmond E, Jung S. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages? Semin Immunol. 2011;23:58–64. This review illustrates how the dendritic cell field is evolving and how some dendritic cells are being reclassified as macrophages.

    Article  PubMed  CAS  Google Scholar 

  43. Aiba S, Tabata N, Ohtani H, et al. Cd34+ spindle-shaped cells selectively disappear from the skin lesion of scleroderma. Arch Dermatol. 1994;130:593–7.

    Article  PubMed  CAS  Google Scholar 

  44. Narvaez D, Kanitakis J, Faure M, et al. Immunohistochemical study of CD34-positive dendritic cells of human dermis. Am J Dermatopathol. 1996;18:283–8.

    Article  PubMed  CAS  Google Scholar 

  45. Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11:427–35.

    Article  PubMed  CAS  Google Scholar 

  46. Gilmour TK, Wilkinson B, Breit SN, et al. Analysis of dendritic cell populations using a revised histological staging of morphoea. Br J Dermatol. 2000;143:1183–92.

    Article  PubMed  CAS  Google Scholar 

  47. Cowper SE, Su LD, Bhawan J, et al. Nephrogenic fibrosing dermopathy. Am J Dermatopathol. 2001;23:383–93.

    Article  PubMed  CAS  Google Scholar 

  48. Jimenez SA, Artlett CM, Sandorfi N, et al. Dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy): study of inflammatory cells and transforming growth factor beta1 expression in affected skin. Arthritis Rheum. 2004;50:2660–6.

    Article  PubMed  CAS  Google Scholar 

  49. Mendoza FA, Artlett CM, Sandorfi N, et al. Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum. 2006;35:238–49.

    Article  PubMed  Google Scholar 

  50. Zaba LC, Fuentes-Duculan J, Steinman RM, et al. Normal human dermis contains distinct populations of CD11c+bdca-1+ dendritic cells and CD163+fxiiia+ macrophages. J Clin Invest. 2007;117:2517–25.

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto T, Takagawa S, Katayama I, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol. 1999;112:456–62.

    Article  PubMed  CAS  Google Scholar 

  52. van Lieshout AWT, Vonk MC, Bredie SJH, et al. Enhanced interleukin-10 production by dendritic cells upon stimulation with Toll-like receptor 4 agonists in systemic sclerosis that is possibly implicated in CCL18 secretion. Scand J Rheumatol. 2009;38:282–90.

    Article  PubMed  Google Scholar 

  53. •• van Bon L, Popa C, Huijbens R, et al. Distinct evolution of TLR-mediated dendritic cell cytokine secretion in patients with limited and diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2010;69:1539–47. This study showed that monocyte-derived dendritic cells, as well as blood dendritic cells from scleroderma patients had abnormal cytokine responses to TLR stimulation. The study further separately examined patients with diffuse and limited scleroderma.

    Article  PubMed  Google Scholar 

  54. Tan FK, Zhou X, Mayes MD, et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford). 2006;45:694–702.

    Article  CAS  Google Scholar 

  55. York MR, Nagai T, Mangini AJ, et al. A macrophage marker, siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and Toll-like receptor agonists. Arthritis Rheum. 2007;56:1010–20.

    Article  PubMed  CAS  Google Scholar 

  56. Lafyatis R, York M. Innate immunity and inflammation in systemic sclerosis. Curr Opin Rheumatol. 2009;21:617–22.

    Article  PubMed  CAS  Google Scholar 

  57. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306.

    Article  PubMed  CAS  Google Scholar 

  58. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5:1219–26.

    Article  PubMed  CAS  Google Scholar 

  59. Farkas L, Beiske K, Lund-Johansen F, et al. Plasmacytoid dendritic cells (natural interferon- {{alpha}}/{beta}-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol. 2001;159:237–43.

    Article  PubMed  CAS  Google Scholar 

  60. Blomberg S, Eloranta ML, Cederblad B, et al. Presence of cutaneous interferon-alpha producing cells in patients with systemic lupus erythematosus. Lupus. 2001;10:484–90.

    Article  PubMed  CAS  Google Scholar 

  61. Kim D, Peck A, Santer D, et al. Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis. Arthritis Rheum. 2008;58:2163–73.

    Article  PubMed  CAS  Google Scholar 

  62. Kaissling B, Le Hir M. Characterization and distribution of interstitial cell types in the renal cortex of rats. Kidney Int. 1994;45:709–20.

    Article  PubMed  CAS  Google Scholar 

  63. Kaissling B, Hegyi I, Loffing J, et al. Morphology of interstitial cells in the healthy kidney. Anat Embryol (Berl). 1996;193:303–18.

    Article  CAS  Google Scholar 

  64. Hart DN, Fuggle SV, Williams KA, et al. Localization of HLA-ABC and DR antigens in human kidney. Transplantation. 1981;31:428–33.

    Article  PubMed  CAS  Google Scholar 

  65. Kruger T, Benke D, Eitner F, et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol. 2004;15:613–21.

    Article  PubMed  Google Scholar 

  66. Vremec D, Pooley J, Hochrein H, et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol. 2000;164:2978–86.

    PubMed  CAS  Google Scholar 

  67. Dong X, Bachman LA, Miller MN, et al. Dendritic cells facilitate accumulation of IL-17 T cells in the kidney following acute renal obstruction. Kidney Int. 2008;74:1294–309.

    Article  PubMed  CAS  Google Scholar 

  68. Machida Y, Kitamoto K, Izumi Y, et al. Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. J Pharmacol Sci. 2011;114:464–73.

    Article  Google Scholar 

  69. Marchal-Somme J, Uzunhan Y, Marchand-Adam S, et al. Dendritic cells accumulate in human fibrotic interstitial lung disease. Am J Respir Crit Care Med. 2007;176:1007–14.

    Article  PubMed  Google Scholar 

  70. Marchal-Sommé J, Uzunhan Y, Marchand-Adam S, et al. Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J Immunol. 2006;176:5735–9.

    PubMed  Google Scholar 

  71. • Bantsimba-Malanda C, Marchal-Somme J, Goven D, et al. A role for dendritic cells in bleomycin-induced pulmonary fibrosis in mice? Am J Respir Crit Care Med. 2010;182:385–95. This study showed that attenuation of dendritic cell activation is associated with attenuated bleomycin-induced lung fibrosis.

    Article  PubMed  CAS  Google Scholar 

  72. •• Connolly MK, Bedrosian AS, Mallen-St. Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Investig. 2009;119:3213–25. This study showed that CD11c + cells orchestrate the inflammatory process in a model of liver fibrosis and showed that they can have direct effects on hepatic stellate cells.

    PubMed  CAS  Google Scholar 

  73. Bataller RN, Brenner DA. Liver fibrosis. J Clin Investig. 2005;115:209–18.

    PubMed  CAS  Google Scholar 

  74. Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory GR1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261–74.

    Article  PubMed  CAS  Google Scholar 

  75. Zammit DJ, Cauley LS, Pham QM, et al. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity. 2005;22:561–70.

    Article  PubMed  CAS  Google Scholar 

  76. Hasegawa M, Fujimoto M, Kikuchi K, et al. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol. 1997;24:328–32.

    PubMed  CAS  Google Scholar 

  77. Kucharz EJ, Brzezinska-Wcislo L, Kotulska A, et al. Elevated serum level of interleukin-10 in patients with systemic sclerosis. Clin Rheumatol. 1997;16:638–9.

    Article  PubMed  CAS  Google Scholar 

  78. Barbarin V, Xing Z, Delos M, et al. Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol. 2005;288:L841–8.

    Article  PubMed  CAS  Google Scholar 

  79. Cutolo M, Soldano S, Montagna P, et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res Ther. 2009;11:R176.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Sha Tian for her expert technical assistance and Dr. Fairouz Benahmed for critical reading of the manuscript.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa T. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T.T. Dendritic Cells: Novel Players in Fibrosis and Scleroderma. Curr Rheumatol Rep 14, 30–38 (2012). https://doi.org/10.1007/s11926-011-0215-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-011-0215-5

Keywords

Navigation