Skip to main content

Advertisement

Log in

Current Status of Understanding the Pathogenesis and Management of Patients With NOMID/CINCA

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Neonatal-onset multisystem inflammatory disease (NOMID)/chronic infantile neurologic, cutaneous, and arthritis (CINCA) syndrome is the most severe clinical phenotype in the spectrum of cryopyrin- (NLRP3/NALP3) associated periodic syndromes (CAPS). The study of patients with NOMID/CINCA has been instrumental in characterizing the extent of organ-specific inflammatory manifestations and damage that can occur with chronic interleukin (IL)-1β overproduction. Mutations in CIAS1/NLRP3 lead to constitutive activation of the “NLRP3 inflammasome,” an intracellular platform that processes and secretes increased amounts of IL-1β. The pivotal role of IL-1β in NOMID/CINCA has been demonstrated in several clinical studies using IL-1—blocking agents that lead to rapid resolution of the inflammatory disease manifestations. NOMID/CINCA is a monogenic autoinflammatory syndrome; and the discovery of the role of IL-1 in NOMID has led to the exploration in the role of IL-1 in other disorders including gout and Type II diabetes. The inflammation in NOMID/CINCA is continuous with intermittent flares, and organ manifestations encompus the central nervous system, eye, inner ear, and bones. This review discusses updates on the pathogenesis of NOMID/CAPS, emerging long term-outcome data regarding IL-1—blocking agents that have influenced our considerations for optimal treatment, and a monitoring approach tailored to the patient’s disease severity and organ manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71:198–203.

    Article  PubMed  CAS  Google Scholar 

  2. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46:3340–8.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29:301–5.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffman HM, Gregory SG, Mueller JL, Tresierras M, Broide DH, Wanderer AA, et al. Fine structure mapping of CIAS1: identification of an ancestral haplotype and a common FCAS mutation, L353P. Hum Genet. 2003;112:209–16.

    PubMed  CAS  Google Scholar 

  5. Infevers: an online database for autoinflammatory mutations. Available at http://fmf.igh.cnrs.fr/ISSAID/infevers/index.php. Accessed January 2011.

  6. Neven B, Callebaut I, Prieur AM, Feldmann J, Bodemer C, Lepore L, et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood. 2004;103:2809–15.

    Article  PubMed  CAS  Google Scholar 

  7. Aksentijevich I, Putnam D, Remmers EF, Mueller JL, Le J, Kolodner RD, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007;56:1273–85.

    Article  PubMed  CAS  Google Scholar 

  8. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355:581–92.

    Article  PubMed  CAS  Google Scholar 

  9. Prieur AM, Griscelli C, Lampert F, Truckenbrodt H, Guggenheim MA, Lovell DJ, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl. 1987;66:57–68.

    Article  PubMed  CAS  Google Scholar 

  10. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095–147.

    PubMed  CAS  Google Scholar 

  11. Muckle TJ. The ‘Muckle-Wells’ syndrome. Br J Dermatol. 1979;100:87–92.

    Article  PubMed  CAS  Google Scholar 

  12. Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N, Couloignier V, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62:258–67.

    Article  PubMed  CAS  Google Scholar 

  13. Touitou I, Sarkisian T, Medlej-Hashim M, Tunca M, Livneh A, Cattan D, et al. Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum. 2007;56:1706–12.

    Article  PubMed  Google Scholar 

  14. Dollfus H, Hafner R, Hofmann HM, Russo RA, Denda L, Gonzales LD, et al. Chronic infantile neurological cutaneous and articular/neonatal onset multisystem inflammatory disease syndrome: ocular manifestations in a recently recognized chronic inflammatory disease of childhood. Arch Ophthalmol. 2000;118:1386–92.

    PubMed  CAS  Google Scholar 

  15. Rigante D, Stabile A, Minnella A, Avallone L, Ziccardi L, Bersani G, et al. Post-inflammatory retinal dystrophy in CINCA syndrome. Rheumatol Int. 2010;30:389–93.

    Article  PubMed  Google Scholar 

  16. Kitley JL, Lachmann HJ, Pinto A, Ginsberg L. Neurologic manifestations of the cryopyrin-associated periodic syndrome. Neurology. 2010;74:1267–70.

    Article  PubMed  CAS  Google Scholar 

  17. Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol. 2007;37:145–52.

    Article  PubMed  Google Scholar 

  18. Torbiak RP, Dent PB, Cockshott WP. NOMID—a neonatal syndrome of multisystem inflammation. Skeletal Radiol. 1989;18:359–64.

    Article  PubMed  CAS  Google Scholar 

  19. Saito M, Fujisawa A, Nishikomori R, Kambe N, Nakata-Hizume M, Yoshimoto M, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2005;52:3579–85.

    Article  PubMed  CAS  Google Scholar 

  20. Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H, Takeichi K, et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood. 2008;111:2132–41.

    Article  PubMed  CAS  Google Scholar 

  21. Arostegui JI, Lopez S, Pascal M, Clemente D, Aymerich M, Balaguer F, et al. A somatic NLRP3 mutation as a cause of a sporadic case of chronic infantile neurologic, cutaneous, articular syndrome/neonatal-onset multisystem inflammatory disease: novel evidence of the role of low-level mosaicism as the pathophysiologic mechanism underlying mendelian inherited diseases. Arthritis Rheum. 2010;62:1158–66.

    Article  PubMed  CAS  Google Scholar 

  22. Goldbach-Mansky R, Plass N, Chapelle D, NOMID study group. Treatment of neonatal-onset multisystem inflammatory disease (NOMID/CINCA) with IL-1 blocker anakinra, after 3 years on treatment. Arthritis Rheum. 2008;58:S633.

    Article  Google Scholar 

  23. Almeida MQ, Tsang KM, Cheadle C, Watkins T, Grivel JC, Nesterova M, et al. Protein kinase A regulates caspase-1 via Ets-1 in bone stromal cell-derived lesions: a link between cyclic AMP and pro-inflammatory pathways in osteoblast progenitors. Hum Mol Genet. 2011;20:165–75.

    Article  PubMed  CAS  Google Scholar 

  24. Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol. 2005;6:973–79.

    Article  PubMed  CAS  Google Scholar 

  25. Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in the innate immune system. Science. 2010;327:286–90.

    Article  PubMed  CAS  Google Scholar 

  26. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40.

    Article  PubMed  CAS  Google Scholar 

  28. Meissner F, Molawi K, Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol. 2008;9:866–72.

    Article  PubMed  CAS  Google Scholar 

  29. Tassi S, Carta S, Delfino L, Caorsi R, Martini A, Gattorno M, et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion. Proc Natl Acad Sci U S A. 2010;107:9789–94.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2010 Dec 1 (Epub ahead of print).

  31. Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, Royen-Kerkhoff A, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360:2426–37.

    Article  PubMed  CAS  Google Scholar 

  32. Yazdi AS, Drexler SK, Tschopp J. The role of the inflammasome in nonmyeloid cells. J Clin Immunol. 2010;30:623–27.

    Article  PubMed  CAS  Google Scholar 

  33. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity. 2009;30:875–87.

    Article  PubMed  CAS  Google Scholar 

  34. Meng G, Zhang F, Fuss I, Kitani A, Strober W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity. 2009;30:860–74.

    Article  PubMed  CAS  Google Scholar 

  35. Borth W, Urbanski A, Prohaska R, Susanj M, Luger TA. Binding of recombinant interleukin-1 beta to the third complement component and alpha 2-macroglobulin after activation of serum by immune complexes. Blood. 1990;75:2388–95.

    PubMed  CAS  Google Scholar 

  36. Lachmann HJ, Lowe P, Felix SD, Rordorf C, Leslie K, Madhoo S, et al. In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med. 2009;206:1029–36.

    Article  PubMed  CAS  Google Scholar 

  37. Fox E, Jayaprakash N, Pham TH, Rowley A, McCully CL, Pucino F, et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol. 2010;223:138–40.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364:1779–85.

    Article  PubMed  CAS  Google Scholar 

  39. Caroli F, Pontillo A, D’Osualdo A, Travan L, Ceccherini I, Crovella S, et al. Clinical and genetic characterization of Italian patients affected by CINCA syndrome. Rheumatology (Oxford). 2007;46:473–78.

    Article  CAS  Google Scholar 

  40. Ross JB, Finlayson LA, Klotz PJ, Langley RG, Gaudet R, Thompson K, et al. Use of anakinra (Kineret) in the treatment of familial cold autoinflammatory syndrome with a 16-month follow-up. J Cutan Med Surg. 2008;12:8–16.

    PubMed  CAS  Google Scholar 

  41. Lepore L, Paloni G, Caorsi R, Alessio M, Rigante D, Ruperto N, et al. Follow-up and quality of life of patients with cryopyrin-associated periodic syndromes treated with Anakinra. J Pediatr. 2010;157:310–5.

    Article  PubMed  Google Scholar 

  42. Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 2008;58:2443–52.

    Article  PubMed  CAS  Google Scholar 

  43. Goldbach-Mansky R, Shroff SD, Wilson M, Snyder C, Plehn S, Barham B, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008;58:2432–42.

    Article  PubMed  CAS  Google Scholar 

  44. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360:2416–25.

    Article  PubMed  CAS  Google Scholar 

  45. Anakinra package insert. Available at http://www.kineretrx.com/professional/pi.jsp.

  46. Rilonacept package insert. Available at http://www.regeneron.com/ARCALYST-fpi.pdf.

  47. Canakinumab package insert. Available at http://www.pharma.us.novartis.com/products/name/ilaris.jsp.

  48. Piram M, Frenkel J, Gattorno M, Ozen S, Lachmann HJ, Goldbach-Mansky R et al. A preliminary score for the assessment of disease activity in hereditary recurrent fevers: results from the AIDAI (Auto-Inflammatory Diseases Activity Index) Consensus Conference. Ann Rheum Dis. 2010.

Download references

Disclosure

Dr. Goldbach-Mansky has received grant support from Novartis and Regeneron Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaela Goldbach-Mansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldbach-Mansky, R. Current Status of Understanding the Pathogenesis and Management of Patients With NOMID/CINCA. Curr Rheumatol Rep 13, 123–131 (2011). https://doi.org/10.1007/s11926-011-0165-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-011-0165-y

Keywords

Navigation