Skip to main content

Advertisement

Log in

Molecular Pathogenesis of Skin Fibrosis: Insight from Animal Models

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Skin fibrosis occurs in a variety of human diseases, most notably systemic sclerosis (SSc). The end stage of scleroderma in human skin consists of excess collagen deposition in the dermis with loss of adnexal structures and associated adipose tissue. The initiating factors for this process and the early stages are believed to occur through vascular injury and immune dysfunction with a dysregulated inflammatory response. However, because of the insidious onset of the disease, this stage is rarely observed in humans and remains poorly understood. Animal models have provided a means to examine these early stages and to isolate and understand the effect of perturbations in signaling pathways, chemokines, and cytokines. This article summarizes recent progress in the understanding of the molecular pathogenesis of skin fibrosis in SSc from different animal models, both its initiation and its maintenance phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently have been highlighted as • Of importance •• Of major importance

  1. Siracusa LD, McGrath R, Ma Q, et al.: A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res 1996, 6:300–313.

    Article  CAS  PubMed  Google Scholar 

  2. •• Bayle J, Fitch J, Jacobsen K, et al.: Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol 2008, 128:871–881. This paper showed via microarray studies, as well as RNase protection and northern blot, that Wnt signaling was upregulated via SFRP4 in Tsk mice and that SFRP4 was also upregulated in human SSc lesional skin, providing a strong case for involvement of this pathway in human SSc pathogenesis.

  3. Jimenez SA, Williams CJ, Myers JC, Bashey RI: Increased collagen biosynthesis and increased expression of type I and type III procollagen genes in tight skin (TSK) mouse fibroblasts. J Biol Chem 1986, 261:657–662.

    CAS  PubMed  Google Scholar 

  4. Ong CJ, Ip S, Teh SJ, et al.: A role for T helper 2 cells in mediating skin fibrosis in tight-skin mice. Cell Immunol 1999, 196:60–68.

    Article  CAS  PubMed  Google Scholar 

  5. McGaha T, Saito S, Phelps RG, et al.: Lack of skin fibrosis in tight skin (TSK) mice with targeted mutation in the interleukin-4R alpha and transforming growth factor-beta genes. J Invest Dermatol 2001, 116:136–143.

    Article  CAS  PubMed  Google Scholar 

  6. Saito E, Fujimoto M, Hasegawa M, et al.: CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest 2002, 109:1453–1462.

    CAS  PubMed  Google Scholar 

  7. Gentiletti J, McCloskey LJ, Artlett CM, et al.: Demonstration of autoimmunity in the tight skin-2 mouse: a model for scleroderma. J Immunol 2005, 175:2418–2426.

    CAS  PubMed  Google Scholar 

  8. Christner PJ, Hitraya EG, Peters J, et al.: Transcriptional activation of the alpha1(I) procollagen gene and up-regulation of alpha1(I) and alpha1(III) procollagen messenger RNA in dermal fibroblasts from tight skin 2 mice. Arthritis Rheum 1998, 41:2132–2142.

    Article  CAS  PubMed  Google Scholar 

  9. Barisic-Dujmovic T, Boban I, Clark SH: Regulation of collagen gene expression in the Tsk2 mouse. J Cell Physiol 2008, 215:464–471.

    Article  CAS  PubMed  Google Scholar 

  10. Saito S, Nishimura H, Phelps RG, et al.: Induction of skin fibrosis in mice expressing a mutated fibrillin-1 gene. Mol Med 2000, 6:825–836.

    CAS  PubMed  Google Scholar 

  11. •• Sonnylal S, Denton CP, Zheng B, et al.: Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum 2007, 56:334–344. This paper reported on a novel transgenic mouse model in which the TGF-β signaling pathway could be activated in fibroblasts postnatally. This model would provide an excellent model for testing of TGF-β-based therapies. This model is also important as it demonstrates the potential of transgenic models. The same approach but with different target genes may in the future be used to test other very specific hypotheses.

  12. Denton CP, Zheng B, Evans LA, et al.: Fibroblast-specific expression of a kinase-deficient type II transforming growth factor beta (TGFbeta) receptor leads to paradoxical activation of TGFbeta signaling pathways with fibrosis in transgenic mice. J Biol Chem 2003, 278:25109–25119.

    Article  CAS  PubMed  Google Scholar 

  13. Samuel CS, Zhao C, Yang Q, et al.: The relaxin gene knockout mouse: a model of progressive scleroderma. J Invest Dermatol 2005, 125:692–699.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto T, Takagawa S, Katayama I, Nishioka K: Anti-sclerotic effect of transforming growth factor-beta antibody in a mouse model of bleomycin-induced scleroderma. Clin Immunol 1999, 92:6–13.

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto T, Kuroda M, Nishioka K: Animal model of sclerotic skin. III: Histopathological comparison of bleomycin-induced scleroderma in various mice strains. Arch Dermatol Res 2000, 292:535–541.

    Article  CAS  PubMed  Google Scholar 

  16. Takagawa S, Lakos G, Mori Y, et al.: Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma. J Invest Dermatol 2003, 121:41–50.

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharyya S, Ghosh AK, Pannu J, et al.: Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. Arthritis Rheum 2005, 52:1248–1258.

    Article  CAS  PubMed  Google Scholar 

  18. • Mori Y, Hinchcliff M, Wu M, et al.: Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-beta responsiveness. Exp Cell Res 2008, 314:1094–1104. Although CCN2 has been speculated to be important in the pathogenesis of fibrosis, this paper indicated that it was less important in Smad-dependent stimulation of collagen.

  19. Lakos G, Takagawa S, Chen SJ, et al.: Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 2004, 165:203–217.

    CAS  PubMed  Google Scholar 

  20. Chen SJ, Ning H, Ishida W, et al.: The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem 2006, 281:21183–21197.

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh AK, Bhattacharyya S, Lakos G, et al.: Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum 2004, 50:1305–1318.

    Article  CAS  PubMed  Google Scholar 

  22. • Wu M, Melichian DS, Chang E, et al.: Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol 2009, 174:519–533. This article demonstrated reduced fibrosis in a scleroderma model using a PPAR-γ blocker and thus a further potential therapeutic target.

  23. Jinnin M, Ihn H, Mimura Y, et al.: Effects of hepatocyte growth factor on the expression of type I collagen and matrix metalloproteinase-1 in normal and scleroderma dermal fibroblasts. J Invest Dermatol 2005, 124:324–330.

    Article  CAS  PubMed  Google Scholar 

  24. Wu MH, Yokozeki H, Takagawa S, et al.: Hepatocyte growth factor both prevents and ameliorates the symptoms of dermal sclerosis in a mouse model of scleroderma. Gene Ther 2004, 11:170–180.

    Article  CAS  PubMed  Google Scholar 

  25. Cronstein BN: Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994, 76:5–13.

    CAS  PubMed  Google Scholar 

  26. Montesinos MC, Desai A, Chen JF, et al.: Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol 2002, 160:2009–2018.

    CAS  PubMed  Google Scholar 

  27. Chan ES, Fernandez P, Merchant AA, et al.: Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum 2006, 54:2632–2642.

    Article  CAS  PubMed  Google Scholar 

  28. Fernández P, Trzaska S, Wilder T, et al.: Pharmacological blockade of A2A receptors prevents dermal fibrosis in a model of elevated tissue adenosine. Am J Pathol 2008, 172:1675–1682.

    Article  PubMed  Google Scholar 

  29. Ferreira AM, Takagawa S, Fresco R, et al.: Diminished induction of skin fibrosis in mice with MCP-1 deficiency. J Invest Dermatol 2006, 126:1900–1908.

    Article  CAS  PubMed  Google Scholar 

  30. • Liu S, Kapoor M, Denton CP, et al.: Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum 2009, 60:2817–2821. This article showed via a β1 integrin-deficient murine model that β1 integrin expression by fibroblasts is required for fibrogenesis and that its inhibition may therefore provide a further therapeutic target.

  31. Lakos G, Melichian D, Wu M, Varga J: Increased bleomycin-induced skin fibrosis in mice lacking the Th1-specific transcription factor T-bet. Pathobiology 2006, 73:224–237.

    Article  CAS  PubMed  Google Scholar 

  32. Aliprantis AO, Wang J, Fathman JW, et al.: Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc Natl Acad Sci U S A 2007, 104:2827–2930.

    Article  CAS  PubMed  Google Scholar 

  33. Ishikawa H, Takeda K, Okamoto A, et al.: Induction of autoimmunity in a bleomycin-induced murine model of experimental systemic sclerosis: an important role for CD4+ T cells. J Invest Dermatol 2009, 129:1688–1695.

    Article  CAS  PubMed  Google Scholar 

  34. Czuwara-Ladykowska J, Shirasaki F, Jackers P, et al.: Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem 2001, 276:20839–20848.

    Article  CAS  PubMed  Google Scholar 

  35. Kubo M, Czuwara-Ladykowska J, Moussa O, et al.: Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol 2003, 163:571–581.

    CAS  PubMed  Google Scholar 

  36. Nakerakanti SS, Kapanadze B, Yamasaki M, et al.: Fli1 and Ets1 have distinct roles in connective tissue growth factor/CCN2 gene regulation and induction of the profibrotic gene program. J Biol Chem 2006, 281:25259–25269.

    Article  CAS  PubMed  Google Scholar 

  37. •• Asano Y, Czuwara J, Trojanowska M: Transforming growth factor-beta regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J Biol Chem 2007, 282:34672–34683. This article provides evidence of the posttranslational mechanisms regulating Fli1 function and its relation to TGF-α.

  38. Zhang Y, McCormick LL, Desai SR, et al.: Murine sclerodermatous graft-versus-host disease, a model for human scleroderma: cutaneous cytokines, chemokines, and immune cell activation. J Immunol 2002, 168:3088–3098.

    CAS  PubMed  Google Scholar 

  39. • Askew D, Zhou L, Wu C, et al.: Absence of cutaneous TNFalpha-producing CD4+ T cells and TNFalpha may allow for fibrosis rather than epithelial cytotoxicity in murine sclerodermatous graft-versus-host disease, a model for human scleroderma. J Invest Dermatol 2007, 127:1905–1914. This article provides evidence supporting an important role for TNF-α in fibrogenesis.

  40. Ruzek MC, Jha S, Ledbetter S, et al.: A modified model of graft-versus-host-induced systemic sclerosis (scleroderma) exhibits all major aspects of the human disease. Arthritis Rheum 2004, 50:1319–1331.

    Article  PubMed  Google Scholar 

  41. Le Hir M, Martin M, Haas C: A syndrome resembling human systemic sclerosis (scleroderma) in MRL/lpr mice lacking interferon-gamma (IFN-gamma) receptor (MRL/lprgammaR-/-). Clin Exp Immunol 1999, 115:281–287.

    Article  PubMed  Google Scholar 

  42. Sgonc R, Gruschwitz MS, Dietrich H, et al.: Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 1996, 98:785–792.

    Article  CAS  PubMed  Google Scholar 

  43. Carvalho D, Savage CO, Black CM, Pearson JD: IgG antiendothelial cell autoantibodies from scleroderma patients induce leukocyte adhesion to human vascular endothelial cells in vitro. Induction of adhesion molecule expression and involvement of endothelium-derived cytokines. J Clin Invest 1996, 97:111–119.

    Article  CAS  PubMed  Google Scholar 

  44. Gruschwitz MS, Moormann S, Krömer G, et al.: Phenotypic analysis of skin infiltrates in comparison with peripheral blood lymphocytes, spleen cells and thymocytes in early avian scleroderma. J Autoimmun 1991, 4:577–593.

    Article  CAS  PubMed  Google Scholar 

  45. Sgonc R: The vascular perspective of systemic sclerosis: of chickens, mice and men. Int Arch Allergy Immunol 1999, 120:169–176.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon P. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G.P., Chan, E.S.L. Molecular Pathogenesis of Skin Fibrosis: Insight from Animal Models. Curr Rheumatol Rep 12, 26–33 (2010). https://doi.org/10.1007/s11926-009-0080-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-009-0080-7

Keywords

Navigation