Skip to main content
Log in

Mechanisms of aPL-mediated thrombosis: Effects of aPL on endothelium and platelets

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Antiphospholipid antibodies (aPL) are associated with thrombosis and pregnancy loss in patients with systemic lupus erythematosus and antiphospholipid syndrome. Strong evidence demonstrates that aPL are pathogenic in vivo from studies that utilized animal models of thrombosis, endothelial cell activation, and pregnancy loss. However, the mechanisms by which aPL mediate disease are only partially understood, and our knowledge is limited by the polyspecificity of the antibodies, the multiple potential end-organ targets, and the variability of the clinical context in which the disease may present. This review discusses and summarizes the most current data available on molecular interactions and pathogenic mechanisms in antiphospholipid syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Harris EN: Syndrome of the black swan. Br J Rheumatol 1987, 26:324–326.

    Article  PubMed  CAS  Google Scholar 

  2. Boey ML, Colaco CB, Gharavi AE, et al.: Thrombosis in SLE: striking associations with the presence of circulating lupus anticoagulant. Br Med J 1983, 287:1021–1023.

    Article  CAS  Google Scholar 

  3. McClain MT, Arbuckle MR, Heinlen LD, et al.: The prevalence, onset and clinical significance of antiphospholipid antibodies prior to diagnosis of systemic lupus erythematosus. Arthritis Rheum 2004, 50:1226–1232.

    Article  PubMed  Google Scholar 

  4. Branch DW, Dudley DJ, Mitchell MD, et al.: Immunoglobulin G fractions from patients with antiphospholipid antibodies cause fetal death in BALB/c mice: a model for autoimmune fetal loss. Am J Obstet Gynecol 1990, 163:210–216.

    PubMed  CAS  Google Scholar 

  5. Pierangeli SS, Colden-Stanfield M, Liu X, et al.: Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation 1999, 99:1997–2000.

    PubMed  CAS  Google Scholar 

  6. Jankowski M, Vreys I, Wittevrongel C, et al.: Thrombogenicity of beta2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood 2003, 101:157–162.

    Article  PubMed  CAS  Google Scholar 

  7. Holers VM, Girardi G, Mo L, et al.: C3 activation is required for anti-phospholipid antibody-induced fetal loss. J Exp Med 2002, 195:211–220.

    Article  PubMed  CAS  Google Scholar 

  8. Salmon JE, Girardi G, Holers VM: Complement activation as a mediator of antiphospholipid antibody induced pregnancy loss and thrombosis. Ann Rheum Dis 2002, 61:46–50.

    Google Scholar 

  9. Pierangeli SS, Girardi G, Vega-Ostertag ME, et al.: Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum 2005, 52:2120–2124.

    Article  PubMed  CAS  Google Scholar 

  10. Fischetti F, Durigutto P, Pellis V, et al.: Thrombus formation induced by antibodies to b2-glycoprotein I is complement-dependent and requires a priming factor. Blood 2005, 106:2340–2346.

    Article  PubMed  CAS  Google Scholar 

  11. Del Papa N, Guidali L, Sala A, et al.: Endothelial cell target for antiphospholipid antibodies. Human polyclonal and monoclonal anti-b2glycoprotein I and induce endothelial cell activation. Arthritis Rheum 1997, 40:551–561.

    Article  PubMed  Google Scholar 

  12. Simantov E, LaSala J, Lo SK, et al.: Activation of cultured vascular endothelial cells by antiphospholipid antibodies. J Clin Invest 1995, 96:2211–2219.

    PubMed  CAS  Google Scholar 

  13. Pierangeli SS, Espinola RG, Liu X, Harris EN: Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res 2001, 88:245–250.

    PubMed  CAS  Google Scholar 

  14. Espinola RG, Liu X, Colden-Stanfield M, et al.: E-selectin mediated pathogenic effects of antiphospholipid antibodies. J Thromb Haemost 2002, 1:843–848.

    Article  Google Scholar 

  15. Kaplanski G, Cacoub P, Farnarier C, et al.: Increased soluble vascular cell adhesion molecule 1 concentrations in patients with primary or systemic lupus erythematosus-related antiphospholipid syndrome: correlations with the severity of thrombosis. Arthritis Rheum 2000, 43:55–64.

    Article  PubMed  CAS  Google Scholar 

  16. Williams FM, Parmar K, Hughes GR, Hunt BJ: Systemic endothelial cell markers in primary antiphospholipid syndrome. J Thromb Haemost 2000, 84:742–746.

    CAS  Google Scholar 

  17. Semerato N, Colucci M: Tissue factor in health and disease. Thromb Haemost 1997, 78:759–764.

    Google Scholar 

  18. Cuadrado MJ, Lopez-Pedrera C, Khamashta MA, et al.: Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression. Arthritis Rheum 1997, 40:834–841.

    Article  PubMed  CAS  Google Scholar 

  19. Amengual O, Atsumi T, Khamashta MA, Hughes GR: The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost 1998, 79:276–281.

    PubMed  CAS  Google Scholar 

  20. Dobado-Barrios M, Lopez-Perrara C, Velasco F, et al.: Increased levels of TF mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb Haemost 1999, 82:1578–1582.

    Google Scholar 

  21. Zhou H, Woldberg AS, Roubey RA: Characterization of monocyte tissue factor activity induced by IgG antiphospholipid antibodies and inhibition by dilazep. Blood 2004, 104:2353–2358.

    Article  PubMed  CAS  Google Scholar 

  22. Forastiero RR, Martinuzzo ME, De Larranaga G: Circulating levels of tissue factor and proinflammatory cytokines in patients with primary antiphospholipid syndrome or leprous related antiphospholipid antibodies. Lupus 2005, 14:129–136.

    Article  PubMed  CAS  Google Scholar 

  23. Firestein GS: NF-kappaB: Holy grail for rheumatoid arthritis. Arthritis Rheum 2004, 50:2381–2386.

    Article  PubMed  Google Scholar 

  24. Cohen P: The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 1997, 7:353–358.

    Article  CAS  PubMed  Google Scholar 

  25. Dunoyer-Geindre S, de Moerloose P, Galve-de Rochemonteiz B, et al.: NF-kappaB is an essential intermediate in the activation of endothelial cells by anti-beta2glycoprotein I antibodies. Thromb Haemost 2002; 88:851–857.

    PubMed  Google Scholar 

  26. Bohgaki M, Atsumi T, Yamashita Y, et al.: The p38 mitogen-activated protein kinase (MAPK) pathway mediates induction of the tissue factor gene in monocytes stimulated with human monoclonal anti-beta2glycoprotein I antibodies. Int Immunol 2004, 16:1632–1641.

    Article  CAS  Google Scholar 

  27. Vega-Ostertag M, Casper K, Swerlick R, et al.: Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum 2005, 52:1545–1554.

    Article  PubMed  CAS  Google Scholar 

  28. Simoncini S, Sapet C, Camoin-Jau L, et al.: Role of reactive oxygen species and p38 MAPK in the induction of the proadhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol 2004, 17:489–500.

    Article  CAS  Google Scholar 

  29. López-Pedrera C, Buendía P, Cuadrado MJ, et al.: Antiphopholipid antibodies from patients with the antiphospholipid syndrome induce tissue factor expression through the simultaneous activation of NF-KappaB/Rel proteins via p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum 2006, 54:301–311.

    Article  PubMed  CAS  Google Scholar 

  30. Pierangeli SS, Vega-Ostertag ME, Liu X: An inhibitor of p38 mitogen-activated protein kinase abrogates procoagulant and proinflammatory effects of antiphospholipid antibodies in vivo [abstract]. Blood 2005, 106:43a.

    Article  CAS  Google Scholar 

  31. Del Papa N, Sheng YH, Raschi E, et al.: Human beta2glycoprotein I binds to endothelial cells through a cluster of lysine residues that are critical for anionic phospholipids binding and offers epitopes for anti-beta2glycoprotein I antibodies. J Immunol 1998, 160:5572–5578.

    PubMed  Google Scholar 

  32. Vega Ostertag M, Liu X, Henderson V, Pierangeli SS: A peptide that mimics the Vth region of beta2glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus 2006, 15:358–365.

    Article  PubMed  Google Scholar 

  33. Zhang J, McCrae KR: Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood 2005, 105:1964–1969.

    Article  PubMed  CAS  Google Scholar 

  34. Cesarman-Maus G, Rios-Luna NP, Deora AB, et al.: Autoantibodies against the fibrinolytic receptor, annexin A2, in antiphospholipid syndrome. Blood 2006, 107:4375–4382.

    Article  PubMed  CAS  Google Scholar 

  35. Di Simone N, Raschi E, Testoni C, et al.: Pathogenic role of anti-b2glycoprotein I antibodies in antiphospholipid associated fetal loss: characterization of b2glycoprotein I binding to trophoblasts cells and functional effects of anti-b2glycoprotein I antibodies in vitro. Ann Rheum Dis 2005, 64:462–467.

    Article  PubMed  CAS  Google Scholar 

  36. Di Simone N, Meroni PL, Del Papa N, et al.: Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered beta2glycoprotein I. Arthritis Rheum 2000, 43:140–151.

    Article  PubMed  Google Scholar 

  37. Raschi E, Testoni C, Bosisio D, et al.: Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood 2003, 101:3495–3500.

    Article  PubMed  CAS  Google Scholar 

  38. Pierangeli SS, Vega-Ostertag ME, Raschi E, et al.: Toll-like receptor 4 is involved in antiphospholipid-mediated thrombosis: In vivo studies. Ann Rheum Dis 2007, Epub ahead of print.

  39. Wojta J, Kaun C, Zorn G, et al.: C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 2002, 100:517–523.

    Article  PubMed  CAS  Google Scholar 

  40. Carbone J, Orera M, Rodriguez-Mahou M, et al.: Immunological abnormalities in primary APS evolving into SLE: 6 years follow-up in women with repeated pregnancy loss. Lupus 1999, 8:274–278.

    Article  PubMed  CAS  Google Scholar 

  41. Munakata Y, Saito T, Matsuda K, et al.: Detection of complement-fixing antiphospholipid antibodies in association with thrombosis. Thromb Haemost 2000, 83:728–731.

    PubMed  CAS  Google Scholar 

  42. Davis WD, Brey RL: Antiphospholipid antibodies and complement activation in patients with cerebral ischemia. Clin Exp Immunol 1992, 10:455–460.

    CAS  Google Scholar 

  43. Khamashta MA, Harris EN, Gharavi AE, et al.: Immune mediated mechanism for thrombosis: antiphospholipid antibody binding to platelet membranes. Ann Rheum Dis 1988, 47:849–854.

    Article  PubMed  CAS  Google Scholar 

  44. Campbell AL, Pierangeli SS, Wellhausen S, Harris EN: Comparison of the effect of anticardiolipin antibodies from patients with the antiphospholipid syndrome and with syphilis on platelet activation and aggregation. Thromb Haemost 1995, 73:529–534.

    PubMed  CAS  Google Scholar 

  45. Lutters BC, Derksen RH, Tekelenburg WL, et al.: Dimers of beta2 glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2′. J Biol Chem 2003, 278:33831–33838.

    Article  PubMed  CAS  Google Scholar 

  46. Espinola RG, Pierangeli SS, Gharavi AE, Harris EN: Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost 2002, 87:518–522.

    PubMed  CAS  Google Scholar 

  47. Forastiero R, Martinuzzo M, Carreras LO, Maclouf J: Anti-beta2 glycoprotein I antibodies and platelet activation in patients with antiphospholipid antibodies: association with increased excretion of platelet-derived thromboxane urinary metabolites. Thromb Haemost 1998, 79:42–45.

    PubMed  CAS  Google Scholar 

  48. Robbins DL, Leung S, Miller-Blair DJ, ZIboh V: Effect of anticardiolipin/beta2-glycoprotein I complexes on production of thromboxane A2 by platelets from patients with the antiphospholipid syndrome. J Rheumatol 1998, 25:51–56.

    PubMed  CAS  Google Scholar 

  49. Vega-Ostertag M, Harris EN, Pierangeli SS: Intracellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin. Arthritis Rheum 2004, 50:2911–2919.

    Article  PubMed  CAS  Google Scholar 

  50. Shi T, Giannakopoulos B, Yan X, et al.: Anti-beta2 glycoprotein I antibodies in complex with beta2 glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib/IX-V. Arthritis Rheum 2006, 54:2558–2567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano E. Vega-Ostertag PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega-Ostertag, M.E., Pierangeli, S.S. Mechanisms of aPL-mediated thrombosis: Effects of aPL on endothelium and platelets. Curr Rheumatol Rep 9, 190–197 (2007). https://doi.org/10.1007/s11926-007-0031-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-007-0031-0

Keywords

Navigation