Skip to main content

Advertisement

Log in

Current concepts in normal and defective angiogenesis: Implications for systemic sclerosis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Vascular abnormalities are a major component of systemic sclerosis, but little is known about the events or mechanisms that initiate vascular injury and prevent its repair. Early stages of systemic sclerosis are characterized by an exaggerated angiogenic response later replaced by defective wound healing and fibrosis. In this review, we summarize the current knowledge of the angiogenic imbalance in systemic sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. LeRoy EC: Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 1996, 22:675–694.

    Article  PubMed  CAS  Google Scholar 

  2. Wigley FM, Flavahan NA: Raynaud’s phenomenon. Rheum Dis Clin North Am 1996, 22:765–781.

    Article  PubMed  CAS  Google Scholar 

  3. Cutolo M, Pizzorni C, Tuccio M, et al.: Nailfold videocapillaroscopic patterns and serum autoantibodies in systemic sclerosis. Rheumatology (Oxford) 2004, 43:719–726.

    Article  CAS  Google Scholar 

  4. Distler O, Distler JH, Scheid A, et al.: Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 2004, 95:109–116.

    Article  PubMed  CAS  Google Scholar 

  5. Gill M, Dias S, Hattori K, et al.: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+)endothelial precursor cells. Circ Res 2001, 88:167–174.

    PubMed  CAS  Google Scholar 

  6. Kuwana M, Okazaki Y, Yasuoka H, et al.: Defective vasculogenesis in systemic sclerosis. Lancet 2004, 364:603–610.

    Article  PubMed  CAS  Google Scholar 

  7. Del Papa N, Quirici N, Soligo D, et al.: Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 2006, 54:2605–2615.

    Article  PubMed  CAS  Google Scholar 

  8. Kahaleh MB, Sherer GK, LeRoy EC: Endothelial injury in scleroderma. J Exp Med 1979, 149:1326–1335.

    Article  PubMed  CAS  Google Scholar 

  9. Youinou P, Revelen R, Bordron A: Is antiendothelial cell antibody the murder weapon in systemic sclerosis? Clin Exp Rheumatol 1999, 17:35–36.

    PubMed  CAS  Google Scholar 

  10. Hill MB, Phipps JL, Cartwright RJ, et al.: Antibodies to membranes of endothelial cells and fibroblasts in scleroderma. Clin Exp Immunol 1996, 106:491–497.

    Article  PubMed  CAS  Google Scholar 

  11. Negi VS, Tripathy NK, Misra R, Nityanand S: Antiendothelial cell antibodies in scleroderma correlate with severe digitial ischemia and pulmonary arterial hypertension. J Rheumatol 1998, 25:462–466.

    PubMed  CAS  Google Scholar 

  12. Garcia de la Pena-Lefebvre P, Chanseaud Y, Tamby MC, et al.: IgG reactivity with a 100-kDa tissue and endothelial cell antigen identified as topoisomerase 1 distinguishes between limited and diffuse systemic sclerosis patients. Clin Immunol 2004, 111:241–251.

    Article  PubMed  CAS  Google Scholar 

  13. Tamby MC, Chanseaud Y, Humbert M, et al.: Anti-endothelial cell antibodies in idiopathic and systemic sclerosis associated pulmonary arterial hypertension. Thorax 2005, 60:765–772.

    Article  PubMed  CAS  Google Scholar 

  14. Wigley FM, Wise RA, Miller R, et al.: Anticentromere antibody as a predictor of digital ischemic loss in patients with systemic sclerosis. Arthritis Rheum 1992, 35:688–693.

    Article  PubMed  CAS  Google Scholar 

  15. Sgonc R, Gruschwitz MS, Dietrich H, et al.: Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 1996, 98:785–792.

    PubMed  CAS  Google Scholar 

  16. Worda M, Sgonc R, Dietrich H, et al.: In vivo analysis of the apoptosis-inducing effect of anti-endothelial cell antibodies in systemic sclerosis by the chorionallantoic membrane assay. Arthritis Rheum 2003, 48:2605–2614.

    Article  PubMed  CAS  Google Scholar 

  17. Bordron A, Dueymes M, Levy Y, et al.: The binding of some human antiendothelial cell antibodies induces endothelial cell apoptosis. J Clin Invest 1998, 101:2029–2035.

    Article  PubMed  CAS  Google Scholar 

  18. Casciola-Rosen LA, Anhalt G, Rosen A: Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994, 179:1317–1330.

    Article  PubMed  CAS  Google Scholar 

  19. Sercarz EE, Lehmann PV, Ametani A, et al.: Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 1993, 11:729–766.

    Article  PubMed  CAS  Google Scholar 

  20. Zhou Z, Menard HA: Autoantigenic posttranslational modifications of proteins: does it apply to rheumatoid arthritis? Curr Opin Rheumatol 2002, 14:250–253.

    Article  PubMed  CAS  Google Scholar 

  21. Izquierdo M, Grandien A, Criado LM, et al.: Blocked negative selection of developing T cells in mice expressing the baculovirus p35 caspase inhibitor. Embo J 1999, 18:156–166.

    Article  PubMed  CAS  Google Scholar 

  22. Andrade F, Roy S, Nicholson D, et al.: Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 1998, 8:451–460.

    Article  PubMed  CAS  Google Scholar 

  23. Casciola-Rosen L, Andrade F, Ulanet D, et al.: Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 1999, 190:815–826.

    Article  PubMed  CAS  Google Scholar 

  24. Schachna L, Wigley FM, Morris S, et al.: Recognition of Granzyme B-generated autoantigen fragments in scleroderma patients with ischemic digital loss. Arthritis Rheum 2002, 46:1873–1884.

    Article  PubMed  CAS  Google Scholar 

  25. Ahmed SS, Tan FK, Arnett FC, et al.: Induction of apoptosis and fibrillin 1 expression in human dermal endothelial cells by scleroderma sera containing anti-endothelial cell antibodies. Arthritis Rheum 2006, 54:2250–2262.

    Article  PubMed  CAS  Google Scholar 

  26. Tan FK, Arnett FC, Reveille JD, et al.: Autoantibodies to fibrillin 1 in systemic sclerosis: ethnic differences in antigen recognition and lack of correlation with specific clinical features or HLA alleles. Arthritis Rheum 2000, 43:2464–2471.

    Article  PubMed  CAS  Google Scholar 

  27. Baroni SS, Santillo M, Bevilacqua F, et al.: Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 2006, 354:2667–2676.

    Article  PubMed  CAS  Google Scholar 

  28. Edelberg JM, Lee SH, Kaur M, et al.: Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 2002, 105:608–613.

    Article  PubMed  CAS  Google Scholar 

  29. Buzza MS, Zamurs L, Sun J, et al.: Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 2005, 280:23549–23558.

    Article  PubMed  CAS  Google Scholar 

  30. Sasaki T, Larsson H, Tisi D, et al.: Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J Mol Biol 2000, 301:1179–1190.

    Article  PubMed  CAS  Google Scholar 

  31. Maeshima Y, Sudhakar A, Lively JC, et al.: Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002, 295:140–143.

    Article  PubMed  CAS  Google Scholar 

  32. Kamphaus GD, Colorado PC, Panka DJ, et al.: Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000, 275:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  33. Cao Y, Ji RW, Davidson D, et al.: Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 1996, 271:29461–29467.

    Article  PubMed  CAS  Google Scholar 

  34. Ferrara N, Clapp C, Weiner R: The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 1991, 129:896–900.

    Article  PubMed  CAS  Google Scholar 

  35. Staton CA, Lewis CE: Angiogenesis inhibitors found within the haemostasis pathway. J Cell Mol Med 2005, 9:286–302.

    Article  PubMed  CAS  Google Scholar 

  36. Hebbar M, Peyrat JP, Hornez L, et al.: Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum 2000, 43:889–893.

    Article  PubMed  CAS  Google Scholar 

  37. Giusti B, Serrati S, Margheri F, et al.: The anti-angiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum 2005, 52:3618–3628.

    Article  PubMed  CAS  Google Scholar 

  38. Del Rosso A, Distler O, Milia AF, et al.: Increased circulating levels of tissue kallikrein in systemic sclerosis correlate with microvascular involvement. Ann Rheum Dis 2005, 64:382–387.

    Article  PubMed  CAS  Google Scholar 

  39. Bhoola KD, Figueroa CD, Worthy K: Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992, 44:1–80.

    PubMed  CAS  Google Scholar 

  40. Plendl J, Snyman C, Naidoo S, et al.: Expression of tissue kallikrein and kinin receptors in angiogenic microvascular endothelial cells. Biol Chem 2000, 381:1103–1115.

    Article  PubMed  CAS  Google Scholar 

  41. Emanueli C, Madeddu P: Targeting kinin receptors for the treatment of tissue ischaemia. Trends Pharmacol Sci 2001, 22:478–484.

    Article  PubMed  CAS  Google Scholar 

  42. Giusti B, Fibbi G, Margheri F, et al.: A model of antiangiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients. Arthritis Res Ther 2006, 8:R115.

    Article  PubMed  CAS  Google Scholar 

  43. O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J: Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 1999, 285:1926–1928.

    Article  PubMed  CAS  Google Scholar 

  44. Staton CA, Brown NJ, Rodgers GR, et al.: Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood 2004, 103:601–606.

    Article  PubMed  CAS  Google Scholar 

  45. Colorado PC, Torre A, Kamphaus G, et al.: Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 2000, 60:2520–2526.

    PubMed  CAS  Google Scholar 

  46. Beecken WD, Engl T, Ringel EM, et al.: An endogenous inhibitor of angiogenesis derived from a transitional cell carcinoma: clipped beta2-glycoprotein-I. Ann Surg Oncol 2006, 13:1241–1251.

    Article  PubMed  Google Scholar 

  47. Davies Cde L, Melder RJ, Munn LL, et al.: Decorin inhibits endothelial migration and tube-like structure formation: role of thrombospondin-1. Microvasc Res 2001, 62:26–42.

    Article  PubMed  CAS  Google Scholar 

  48. O’Reilly MS, Boehm T, Shing Y, et al.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997, 88:277–285.

    Article  PubMed  CAS  Google Scholar 

  49. Albig AR, Schiemann WP: Fibulin-5 antagonizes vascular endothelial growth factor (VEGF) signaling and angiogenic sprouting by endothelial cells. DNA Cell Biol 2004, 23:367–379.

    Article  PubMed  CAS  Google Scholar 

  50. Dawson DW, Volpert OV, Gillis P, et al.: Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999, 285:245–248.

    Article  PubMed  CAS  Google Scholar 

  51. Maione TE, Gray GS, Petro J, et al.: Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990, 247:77–79.

    Article  PubMed  CAS  Google Scholar 

  52. Mulligan-Kehoe MJ, Wagner R, Wieland C, Powell R: A truncated plasminogen activator inhibitor-1 protein induces and inhibits angiostatin (kringles 1–3), a plasminogen cleavage product. J Biol Chem 2001, 276:8588–8596.

    Article  PubMed  CAS  Google Scholar 

  53. Kim JS, Chang JH, Yu HK, et al.: Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic kringle fragments of human apolipoprotein(a). J Biol Chem 2003, 278:29000–29008.

    Article  PubMed  CAS  Google Scholar 

  54. Tolsma SS, Volpert OV, Good DJ, et al.: Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 1993, 122:497–511.

    Article  PubMed  CAS  Google Scholar 

  55. Stetler-Stevenson WG, Seo DW: TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med 2005, 11:97–103.

    Article  PubMed  CAS  Google Scholar 

  56. Whitfield ML, Finlay DR, Murray JI, et al.: Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 2003, 100:12319–12324.

    Article  PubMed  CAS  Google Scholar 

  57. Leask A, Abraham DJ, Finlay DR, et al.: Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum 2002, 46:1857–1865.

    Article  PubMed  CAS  Google Scholar 

  58. Lawrence A, Khanna D, Misra R, Aggarwal A: Increased expression of basic fibroblast growth factor in skin of patients with systemic sclerosis. Dermatol Online J 2006, 12:2.

    PubMed  CAS  Google Scholar 

  59. D’Alessio S, Fibbi G, Cinelli M, et al.: Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum 2004, 50:3275–3285.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Simons MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulligan-Kehoe, M.J., Simons, M. Current concepts in normal and defective angiogenesis: Implications for systemic sclerosis. Curr Rheumatol Rep 9, 173–179 (2007). https://doi.org/10.1007/s11926-007-0013-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-007-0013-2

Keywords

Navigation