Skip to main content

Advertisement

Log in

Autoimmunity in systemic sclerosis: Current concepts

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is characterized by tissue fibrosis, obliterative microangiopathy, and immune abnormalities. The role of autoimmunity in generating the clinical and pathologic phenotype in SSc remains uncertain. Distinct subsets of antinuclear antibodies are selectively associated with unique disease manifestations but do not have a proven pathogenic role. A new class of autoantibodies recognizing cellular or extracellular matrix antigens has been recognized in SSc patients. They seem to directly activate pathways that may contribute to SSc-specific tissue and vascular damage. Data confirms that activation and polarization of T cells can contribute to a profibrotic environment. Also, activated immune effector cells can promote vascular obliterative damage through direct cytotoxic pathways targeting the endothelium or by inducing proinflammatory molecules. Technologies are emerging to accurately measure the autoantigen-specific T-cell response in SSc patients. Perturbed B-cell homeostasis has been reported in SSc. If confirmed in-vivo, these advances could lead to new disease-modifying therapeutic strategies directed at SSc-specific immune effector pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wigley FM, Hummers LK: Clinical features of systemic sclerosis. In Rheumatology, 3rd edition. Edited by Hochberg MC, Silman AJ, Smolen JS, et al. St. Louis: Mosby; 2003:1463–1480.

    Google Scholar 

  2. Harris ML, Rosen A: Autoimmunity in scleroderma: the origin, pathogenetic role, and clinical significance of autoantibodies. Curr Opin Rheumatol 2003, 15:778–784.

    Article  PubMed  CAS  Google Scholar 

  3. Hu PQ, Fertig N, Medsger TA Jr, et al.: Correlation of serum anti-DNA topoisomerase I antibody levels with disease severity and activity in systemic sclerosis. Arthritis Rheum 2003, 48:1363–1373.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou X, Tan F, Milewicz DM, et al.: Autoantibodies to fibrillin-1 activate normal human fibroblasts in culture through the TGF-beta pathway to recapitulate the “scleroderma phenotype.” J Immunol 2005, 175:4555–4560.

    PubMed  CAS  Google Scholar 

  5. Baroni SS, Santillo M, Bevilacqua F, et al.: Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 2006, 354:2667–2676.

    Article  PubMed  CAS  Google Scholar 

  6. Henault J, Robitaille G, Senecal JL, et al.: DNA topoisomerase I binding to fibroblasts induces monocyte adhesion and activation in the presence of anti-topoisomerase I autoantibodies from systemic sclerosis patients. Arthritis Rheum 2006, 54:963–973.

    Article  PubMed  CAS  Google Scholar 

  7. Abraham DJ, Varga J: Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol 2005, 26:587–595.

    Article  PubMed  CAS  Google Scholar 

  8. Chizzolini C, Raschi E, Rezzonico R, et al.: Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis Rheum 2002, 46:1602–1613.

    Article  PubMed  CAS  Google Scholar 

  9. Kaneko Y, Nimmerjahn F, Ravetch JV: Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006, 313:670–673.

    Article  PubMed  CAS  Google Scholar 

  10. Kaartinen V, Warburton D: Fibrillin controls TGF-beta activation. Nat Genet 2003, 33:331–332.

    Article  PubMed  CAS  Google Scholar 

  11. Dietz HC, Pyeritz RE: Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet 1995, 4 Spec No:1799–1809.

    PubMed  CAS  Google Scholar 

  12. Tan FK, Arnett FC, Antohi S, et al.: Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J Immunol 1999, 163:1066–1072.

    PubMed  CAS  Google Scholar 

  13. Murai C, Saito S, Kasturi KN, et al.: Spontaneous occurrence of anti-fibrillin-1 autoantibodies in tight-skin mice. Autoimmunity 1998, 28:151–155.

    PubMed  CAS  Google Scholar 

  14. Brinckmann J, Hunzelmann N, El-Hallous E, et al.: Absence of autoantibodies against correctly folded recombinant fibrillin-1 protein in systemic sclerosis patients. Arthritis Res Ther 2005, 7:R1221–1226.

    Article  PubMed  CAS  Google Scholar 

  15. Vincent A, Leite MI: Neuromuscular junction autoimmune disease: muscle specific kinase antibodies and treatments for myasthenia gravis. Curr Opin Neurol 2005, 18:519–525.

    Article  PubMed  CAS  Google Scholar 

  16. Schermuly RT, Dony E, Ghofrani HA, et al.: Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005, 115:2811–2821.

    Article  PubMed  CAS  Google Scholar 

  17. Gay S, Jones RE Jr, Huang GQ, Gay RE: Immunohistologic demonstration of platelet-derived growth factor (PDGF) and sis-oncogene expression in scleroderma. J Invest Dermatol 1989, 92:301–303.

    Article  PubMed  CAS  Google Scholar 

  18. Yamakage A, Kikuchi K, Smith EA, et al.: Selective upregulation of platelet-derived growth factor alpha receptors by transforming growth factor beta in scleroderma fibroblasts. J Exp Med 1992, 175:1227–1234.

    Article  PubMed  CAS  Google Scholar 

  19. Abdollahi A, Li M, Ping G, et al.: Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 2005, 201:925–935.

    Article  PubMed  CAS  Google Scholar 

  20. Laplante P, Raymond MA, Gagnon G, et al.: Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis. J Immunol 2005, 174:5740–5749.

    PubMed  CAS  Google Scholar 

  21. Worda M, Sgonc R, Dietrich H, et al.: In vivo analysis of the apoptosis-inducing effect of anti-endothelial cell antibodies in systemic sclerosis by the chorionallantoic membrane assay. Arthritis Rheum 2003, 48:2605–2614.

    Article  PubMed  CAS  Google Scholar 

  22. Prescott RJ, Freemont AJ, Jones CJ, et al.: Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 1992, 166:255–263.

    Article  PubMed  CAS  Google Scholar 

  23. Harrison NK, Myers AR, Corrin B, et al.: Structural features of interstitial lung disease in systemic sclerosis. Am Rev Respir Dis 1991, 144:706–713.

    PubMed  CAS  Google Scholar 

  24. Mavalia C, Scaletti C, Romagnani P, et al.: Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 1997, 151:1751–1758.

    PubMed  CAS  Google Scholar 

  25. Lee CG, Homer RJ, Zhu Z, et al.: Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001, 194:809–821.

    Article  PubMed  CAS  Google Scholar 

  26. Tsuji-Yamada J, Nakazawa M, Minami M, et al.: Increased frequency of interleukin 4 producing CD4+ and CD8+ cells in peripheral blood from patients with systemic sclerosis. J Rheumatol 2001, 28:1252–1258.

    PubMed  CAS  Google Scholar 

  27. Luzina IG, Atamas SP, Wise R, et al.: Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum 2003, 48:2262–2274.

    Article  PubMed  CAS  Google Scholar 

  28. Hamilton RF Jr, Parsley E, Holian A: Alveolar macrophages from systemic sclerosis patients: evidence for IL-4-mediated phenotype changes. Am J Physiol Lung Cell Mol Physiol 2004, 286:L1202–1209.

    Article  PubMed  CAS  Google Scholar 

  29. Sgonc R, Gruschwitz MS, Dietrich H, et al.: Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 1996, 98:785–792.

    PubMed  CAS  Google Scholar 

  30. Bobik A: Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 2006, 26:1712–1720.

    Article  PubMed  CAS  Google Scholar 

  31. Choy JC, Cruz RP, Kerjner A, et al.: Granzyme B induces endothelial cell apoptosis and contributes to the development of transplant vascular disease. Am J Transplant 2005, 5:494–499.

    Article  PubMed  CAS  Google Scholar 

  32. Buzza MS, Zamurs L, Sun J, et al.: Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 2005, 280:23549–23558.

    Article  PubMed  CAS  Google Scholar 

  33. Kahaleh MB, Fan PS: Mechanism of serum-mediated endothelial injury in scleroderma: identification of a granular enzyme in scleroderma skin and sera. Clin Immunol Immunopathol 1997, 83:32–40.

    Article  PubMed  CAS  Google Scholar 

  34. Casciola-Rosen L, Andrade F, Ulanet D, et al.: Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 1999, 190:815–826.

    Article  PubMed  CAS  Google Scholar 

  35. Del Galdo F, Artlett CM, Jimenez SA: The role of allograft inflammatory factor 1 in systemic sclerosis. Curr Opin Rheumatol 2006, 18:588–593.

    Article  PubMed  CAS  Google Scholar 

  36. Utans U, Arceci RJ, Yamashita Y, et al.: Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J Clin Invest 1995, 95:2954–2962.

    PubMed  CAS  Google Scholar 

  37. Kelemen SE, Autieri MV: Expression of allograft inflammatory factor-1 in T lymphocytes: a role in T-lymphocyte activation and proliferative arteriopathies. Am J Pathol 2005, 167:619–626.

    PubMed  CAS  Google Scholar 

  38. Tian Y, Kelemen SE, Autieri MV: Inhibition of AIF-1 expression by constitutive siRNA expression reduces macrophage migration, proliferation, and signal transduction initiated by atherogenic stimuli. Am J Physiol Cell Physiol 2006, 290:C1083–1091.

    Article  PubMed  CAS  Google Scholar 

  39. Tan FK, Zhou X, Mayes MD, et al.: Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 2006, 45:694–702.

    Article  CAS  Google Scholar 

  40. Del Galdo F, Maul GG, Jimenez SA, et al.: Expression of allograft inflammatory factor 1 in tissues from patients with systemic sclerosis and in vitro differential expression of its isoforms in response to transforming growth factor beta. Arthritis Rheum 2006, 54:2616–2625.

    Article  PubMed  CAS  Google Scholar 

  41. Sakkas LI, Chikanza IC, Platsoucas CD: Mechanisms of Disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol 2006, 2:679–685.

    Article  PubMed  CAS  Google Scholar 

  42. Sakkas LI, Xu B, Artlett CM, et al.: Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol 2002, 168:3649–3659.

    PubMed  CAS  Google Scholar 

  43. Yurovsky VV, Wigley FM, Wise RA, et al.: Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol 1996, 48:84–97.

    Article  PubMed  CAS  Google Scholar 

  44. Dereure O, Gubler B, Bessis D, et al.: The presence of dominant T-cell clones in peripheral blood of patients with collagen vascular disorders: a prospective study of 97 cases. Br J Dermatol 2006, 154:445–449.

    Article  PubMed  CAS  Google Scholar 

  45. De Palma R, Del Galdo F, Lupoli S, et al.: Peripheral T lymphocytes from patients with early systemic sclerosis co-cultured with autologous fibroblasts undergo an oligo clonal expansion similar to that occurring in the skin. Clin Exp Immunol 2006, 144:169–176.

    Article  PubMed  Google Scholar 

  46. Winek J, Mueller A, Csernok E, et al.: Frequency of proteinase 3 (PR3)-specific autoreactive T cells determined by cytokine flow cytometry in Wegener’s granulomatosis. J Autoimmun 2004, 22:79–85.

    Article  PubMed  CAS  Google Scholar 

  47. Arnett FC: HLA and autoimmunity in scleroderma (systemic sclerosis). Int Rev Immunol 1995, 12:107–128.

    PubMed  CAS  Google Scholar 

  48. Vazquez-Abad D, Russell C, Cusick SM, et al.: Longitudinal study of anticentromere and antitopoisomerase-I isotypes. Clin Immunol Immunopathol 1995, 74:257–270.

    Article  PubMed  CAS  Google Scholar 

  49. Kuwana M, Medsger TA Jr, Wright TM: T cell proliferative response induced by DNA topoisomerase I in patients with systemic sclerosis and healthy donors. J Clin Invest 1995, 96:586–596.

    PubMed  CAS  Google Scholar 

  50. Rands AL, Whyte J, Cox B, et al.: MHC class II associations with autoantibody and T cell immune responses to the scleroderma autoantigen topoisomerase I. J Autoimmun 2000, 15:451–458.

    Article  PubMed  CAS  Google Scholar 

  51. Veeraraghavan S, Renzoni E, Jeal H, et al.: Mapping of the immunodominant T cell epitopes of the protein topoisomerase I. Ann Rheum Dis 2004, 63:982–987.

    Article  PubMed  CAS  Google Scholar 

  52. Hu PQ, Oppenheim JJ, Medsger TA Jr, et al.: T cell lines from systemic sclerosis patients and healthy controls recognize multiple epitopes on DNA topoisomerase I. J Autoimmun 2006, 26:258–267.

    Article  PubMed  CAS  Google Scholar 

  53. Kern F, LiPira G, Gratama JW, et al.: Measuring Ag-specific immune responses: understanding immunopathogenesis and improving diagnostics in infectious disease, autoimmunity and cancer. Trends Immunol 2005, 26:477–484.

    Article  PubMed  CAS  Google Scholar 

  54. Boin F, Wigley FM, Schneck JP, et al.: Evaluation of topoisomerase-1-specific CD8+ T-cell response in systemic sclerosis. Ann N Y Acad Sci 2005, 1062:137–145.

    Article  PubMed  CAS  Google Scholar 

  55. Davidson A, Diamond B: Autoimmune diseases. N Engl J Med 2001, 345:340–350.

    Article  PubMed  CAS  Google Scholar 

  56. Sato S, Fujimoto M, Hasegawa M, et al.: Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 2004, 50:1918–1927.

    Article  PubMed  Google Scholar 

  57. Tedder TF, Poe JC, Fujimoto M, et al.: The CD19-CD21 signal transduction complex of B lymphocytes regulates the balance between health and autoimmune disease: systemic sclerosis as a model system. Curr Dir Autoimmun 2005, 8:55–90.

    Article  PubMed  CAS  Google Scholar 

  58. Matsushita T, Hasegawa M, Yanaba K, et al.: Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 2006, 54:192–201.

    Article  PubMed  CAS  Google Scholar 

  59. Hasegawa M, Hamaguchi Y, Yanaba K, et al.: B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am J Pathol 2006, 169:954–966.

    Article  PubMed  CAS  Google Scholar 

  60. Nishijima C, Hayakawa I, Matsushita T, et al.: Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin Exp Immunol 2004, 138:357–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Rosen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boin, F., Rosen, A. Autoimmunity in systemic sclerosis: Current concepts. Curr Rheumatol Rep 9, 165–172 (2007). https://doi.org/10.1007/s11926-007-0012-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-007-0012-3

Keywords

Navigation