Skip to main content

Advertisement

Log in

Lessons from animal models of arthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

There is increasing thought that autoantibodies to systemic self-antigens may provide a principal effector mechanism for the initiation and propagation of joint inflammation. The recent identification of arthritis transfer with antibodies to the self-antigen glucose-6-phosphate isomerase has boosted this interest. Fc receptor involvement in arthritis has been evaluated, identifying pro-inflammatory and inhibitory Fc gamma receptor subtypes, and demonstrating a link between Fc gamma receptor expression, cytokine production, cartilage destruction, and mouse strain susceptibility to immune complex arthritis. Further proof of a key role of interleukin (IL)-1 in arthritis was provided by the occurrence of spontaneous arthritis in IL-1 receptor antagonist knockout mice and elicitation of full-blown arthritis in tumor necrosis factor (TNF)-deficient mice. IL-18 (part of the IL-1 family) is a crucial upstream cytokine that, with IL-12, induces IL-1 and TNF and promotes arthritis and T-cell differentiation. IL-18 neutralization improved arthritis outcome, but its central role in host defense against bacterial infections may complicate therapeutic IL-18 targeting. T helper 1 (Th1) cells may aggravate arthritis and joint destruction through the production of IL-17, which shows joint destructive potential independent of IL-1. Studies have also focused on the control of receptor activator of nuclear factor kappaB ligand, modulation with IL-4, and regulation of downstream mediators in tissue destruction. Gene therapeutic approaches proved efficacious and will provide future ways to control arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Korganow AS, Ji H, Mangialaio S, et al.: From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999, 10:451–461.

    Article  PubMed  CAS  Google Scholar 

  2. McDevitt H: A new model for rheumatoid arthritis? Arthritis Res 2000, 2:85–89.

    Article  PubMed  CAS  Google Scholar 

  3. Benoist C, Mathis D: A revival of the B cell paradigm for RA pathogenesis. Arthritis Res 2000, 2:90–94.

    Article  PubMed  CAS  Google Scholar 

  4. Schaller M, Burton DR, Ditzel HJ: Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nat Immunol 2001, 2:746–753. First demonstration of anti-GPI antibodies in rheumatoid arthritis.

    Article  PubMed  CAS  Google Scholar 

  5. Schellekens GA, de Jong BAW, van den Hoogen FHJ, et al.: Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis specific antibodies. J Clin Invest 1998, 101:273–281.

    PubMed  CAS  Google Scholar 

  6. Clynes R, Maizes JS, Guinamard R, et al.: Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 1999, 189:179–185.

    Article  PubMed  CAS  Google Scholar 

  7. Ravetch JV, Bolland S: IgG Fc receptors. Annu Rev Immunol 2001, 19:275–290.

    Article  PubMed  CAS  Google Scholar 

  8. Yuasa T, Kubo S, Yoshino T, et al.: Deletion of Fc gamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. J Exp Med 1999, 189:187–194.

    Article  PubMed  CAS  Google Scholar 

  9. Kleinau S, Martinsson P, Heyman B: Induction and suppression of collagen-induced arthritis is dependent on distinct Fc gamma receptors. J Exp Med 2000, 191:1611–1616. Lack of regulatory receptors can augment arthritis severity.

    Article  PubMed  CAS  Google Scholar 

  10. Blom AB, van Lent PL, van Vuuren H, et al.: Fc gamma R expression on macrophages is related to severity and chronicity of synovial inflammation and cartilage destruction during experimental immune-complex-mediated arthritis (ICA). Arthritis Res 2000, 2:489–503.

    Article  PubMed  CAS  Google Scholar 

  11. Ji H, Gauguier D, Ohmura K, et al.: Genetic influences on the endstage effector phase of arthritis. J Exp Med 2001, 194:321–330. Genetic background has a strong impact on immune complexmediated arthritis.

    Article  PubMed  CAS  Google Scholar 

  12. Johansson AC, Sundler M, Kjellen P, et al.: Genetic control of collagen arthritis: a cross with NOD and C57Bl mice is dependent on gene regions encoding complement factor 5 and FcgammaRIIb and is not associated with loci controlling diabetes. Eur J Immunol 2001, 31:1847–1856.

    Article  PubMed  CAS  Google Scholar 

  13. van Lent PLEM, van Vuuren AJ, Blom AB, et al.: Role of Fc receptor gamma chain in inflammation and cartilage damage during experimental antigen-induced arthritis. Arthritis Rheum 2000, 43:740–752.

    Article  PubMed  Google Scholar 

  14. Van Lent PLEM, Nabbe K, Blom AB, et al.: Role of activatory Fc gamma RI and Fc gamma RIII and inhibitory Fc gamma RII in inflammation and cartilage destruction during experimental antigen-induced arthritis. Am J Pathol 2001, 159:2309–2320. Different roles of FcR gamma I and III in inflammation and cartilage destruction.

    PubMed  Google Scholar 

  15. van den Berg WB, Joosten LAB, van de Loo FAJ: TNF and IL-1b are separate targets in chronic arthritis. Clin Exp Rheumatol 1999, 17:S105-S114.

    PubMed  Google Scholar 

  16. Van den Berg WB: What we learn from arthritis models to benefit arthritis patients. Baillière’s Clin Rheumatol 2000, 14:599–616.

    Google Scholar 

  17. Campbell IK, O’Donnell K, Lawlor KE, Wicks IP: Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest 2001, 107:1519–1527. Demonstrates that tumor necrosis factor is only one of the arthritis controlling cytokines.

    PubMed  CAS  Google Scholar 

  18. Kassiotis G, Kollias G: Uncoupling the proinflammatory from the immunosuppressive properties of TNF at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 2001, 193:427–434. Underlines the controlling, immunosuppressive role of tumor necrosis factor.

    Article  PubMed  CAS  Google Scholar 

  19. van Lent PLEM, van de Loo FAJ, Holthuysen AEM, et al.: Major role for IL-1 but not TNF in early cartilage damage in IC arthritis in mice. J Rheumatol 1995, 22:2250–2258.

    PubMed  Google Scholar 

  20. Kyburz D, Carson DA, Corr M: The role of CD40 ligand and tumor necrosis factor alpha signaling in the transgenic K/ BxN mouse model of rheumatoid arthritis. Arthritis Rheum 2000, 43:2571–2577. Shows tumor necrosis factor independence of passive immune complex arthritis.

    Article  PubMed  CAS  Google Scholar 

  21. Guedez YB, Whittington KB, Clayton JL, et al.: Genetic ablation of IFN_ upregulates IL-1_ expression and enables the elicitation of collagen induced arthritis in a nonsusceptible mouse strain. Arthritis Rheum 2001, 44:2413–2424.

    Article  PubMed  CAS  Google Scholar 

  22. Horai R, Saijo S, Tanioka M, et al.: Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000, 191:313–320. The first demonstration that the lack of control by endogenous interleukin (IL)-1ra induced spontaneous arthritis, arguing for a role of IL- 1 in arthritis under normal environmental pressure.

    Article  PubMed  CAS  Google Scholar 

  23. Nicklin MJ, Hughes DE, Barton JL, et al.: Arterial inflammation in mice lacking the IL-1 receptor antagonist gene. J Exp Med 2000, 191:303–312.

    Article  PubMed  CAS  Google Scholar 

  24. Gabay C, Marinova Mutafchieva L, Williams RO, et al.:Increased production of intracellular interleukin-1 receptor antagonist type I in the synovium of mice with collageninduced arthritis: a possible role in the resolution of arthritis. Arthritis Rheum 2001, 44:451–462.

    Article  PubMed  CAS  Google Scholar 

  25. Bendele AM, Chlipala ES, Scherrer J, et al.: Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PEGylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 2000, 43:2648–2659.

    Article  PubMed  CAS  Google Scholar 

  26. Mindrescu C, Thorbecke GJ, Klein MJ, et al.: Amelioration of collagen-induced arthritis in DBA/1J mice by recombinant TSG-6, a tumor necrosis factor/interleukin-1-inducible protein. Arthritis Rheum 2000, 43:2668–2677. Demonstration of therapeutic efficacy of a novel endogenous cytokine regulator.

    Article  PubMed  CAS  Google Scholar 

  27. Bardos T, Kamath RV, Mikecz K, Glant TT: Anti-inflammatory and chondroprotective effect of TSG-6 (tumor necrosis factor-alpha-stimulated gene-6) in murine models of experimental arthritis. Am J Pathol 2001, 159:1711–1721.

    PubMed  CAS  Google Scholar 

  28. Dinarello CA: Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw 2000, 11:483–486.

    PubMed  CAS  Google Scholar 

  29. Gracie JA, Forsey RJ, Chan WL, et al.: A proinflammatory role for IL-18 in RA. J Clin Invest 1999, 104:1393–1401.

    PubMed  CAS  Google Scholar 

  30. Leung BP, McInnes IB, Esfandiari E, et al.: Combined effects of IL-12 and IL-18 on the induction of collagen-induced arthritis. J Immunol 2000, 164:6495–6502.

    PubMed  CAS  Google Scholar 

  31. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H: IL-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 2001, 12:53–72.

    Article  PubMed  CAS  Google Scholar 

  32. Esfandiari E, McInnis IB, Lindop G, et al.: A proinflammatory role of IL-18 in the development of spontaneous autoimmune disease. J Immunol 2001, 167:5338–5347.

    PubMed  CAS  Google Scholar 

  33. Leung BP, Culshaw S, Gracie JA, et al.: A role for IL-18 in neutrophil activation. J Immunol 2001, 167:2879–2886.

    PubMed  CAS  Google Scholar 

  34. Park CC, Morel JCM, Amin MA, et al.: Evidence of IL-18 as a novel angiogenic mediator. J Immunol 2001, 167:1644–1653.

    PubMed  CAS  Google Scholar 

  35. Wei XQ, Leung BP, Arthur HML, McInnes IB, Liew FY: Reduced incidence and severity of collagen-induced arthritis in mice lacking IL-18. J Immunol 2001, 166:517–521. First demonstration of impact of interleukin-18 deficiency on collagen autoimmune response and arthritis.

    PubMed  CAS  Google Scholar 

  36. Plater Zyberk C, Joosten LAB, Helsen MMA, et al.: Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest 2001, 108:1825–1832. First demonstration of therapeutic efficacy of anti-interleukin-18 therapy at arthritis onset.

    Article  PubMed  CAS  Google Scholar 

  37. Joosten LAB, van de Loo FAJ, Lubberts E, et al.: An IFN-gammaindependent proinflammatory role of IL-18 in murine streptococcal cell wall arthritis. J Immunol 2000, 165:6553–6558. Identification of a pro-inflammatory role of interleukin-18 in arthritis, independent of immunity and interferon-gamma.

    PubMed  CAS  Google Scholar 

  38. Dayer JM: IL-18, rheumatoid arthritis and tissue destruction. J Clin Invest 1999, 104:1337–1339.

    PubMed  CAS  Google Scholar 

  39. Chabaud M, Durand JM, Buchs N, et al.: Human IL-17: a T cell derived proinflammatory cytokine produced by the RA synovium. Arthritis Rheum 1999, 42:963–971.

    Article  PubMed  CAS  Google Scholar 

  40. Lubberts E, Joosten LAB, van de Loo FAJ, et al.: Reduction of IL- 17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by IL-4. Arthritis Rheum 2000, 43:1300–1306.

    Article  PubMed  CAS  Google Scholar 

  41. Dudler J, Renggli Zulliger N, Busso N, Lotz M, So A: Effect of interleukin 17 on proteoglycan degradation in murine knee joints. Ann Rheum Dis 2000, 59:529–532.

    Article  PubMed  CAS  Google Scholar 

  42. Cai LP, Yin JP, Starovasnik MA, et al.: Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine 2001, 16:10–21.

    Article  PubMed  CAS  Google Scholar 

  43. Lubberts E, Joosten LAB, Oppers B, et al.: IL-1 independent role of IL-17 in synovial inflammation and joint destruction during collagen induced arthritis. J Immunol 2001, 167:1004–1013. Demonstrates the bone and cartilage destructive potential of interleukin-17, independent of interleukin-1.

    PubMed  CAS  Google Scholar 

  44. Bush KA, Walker JS, Lee CS, Kirkham BW: Cytokine expression and synovial pathology in the initial and spontaneous resolution phases of adjuvant arthritis: interleukin-17 expression is upregulated in early disease. Clin Exp Immunol 2001, 123:487–495.

    Article  PubMed  CAS  Google Scholar 

  45. Chabaud M, Miossec P: The combination of tumor necrosis factor alpha blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum 2001, 44:1293–1303. The first study showing added value of combined triple anticytokine blockade.

    Article  PubMed  CAS  Google Scholar 

  46. Chabaud M, Lubberts E, Joosten L, van den Berg WB, Miossec P:IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001, 3:168–177.

    Article  PubMed  CAS  Google Scholar 

  47. Li HZ, Chen J, Huang A, et al.: Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA 2000, 97:773–778.

    Article  PubMed  CAS  Google Scholar 

  48. Lee J, Ho WH, Maruoka M, et al.: IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 2001, 276:1660–1664.

    Article  PubMed  CAS  Google Scholar 

  49. Kong YY, Feige U, Sarosi I, et al.: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999, 402:304–309.

    Article  PubMed  CAS  Google Scholar 

  50. Goldring SR, Gravallese EM: Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res 2000, 2:33–37.

    Article  PubMed  CAS  Google Scholar 

  51. Gravallese EM, Galson DL, Goldring SR, Auron PE: The role of TNF-receptor family members and other TRAF-dependent receptors in bone resorption. Arthritis Res 2001, 3:6–12.

    Article  PubMed  CAS  Google Scholar 

  52. Kotake S, Udagawa N, Takahashi N, et al.: IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999, 103:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  53. Kotake S, Udagawa N, Hakoda M, et al.: Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 2001, 44:1003–1012. Emphasizes the direct contribution of activated T cells in bone erosion in rheumatoid arthritis.

    Article  PubMed  CAS  Google Scholar 

  54. Romas E, Bakharevski O, Hards DK, et al.: Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum 2000, 43:821–826.

    Article  PubMed  CAS  Google Scholar 

  55. Pettit AR, Ji H, von Stechow D, et al.: TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001, 159:1689–1699. Uncouples the relevance of receptor activator of nuclear factorkappaB ligand in cartilage and bone erosion.

    PubMed  CAS  Google Scholar 

  56. Komuro H, Olee T, Kuhn K, et al.: The osteoprotegerin/ receptor activator of nuclear factor kappa B/receptor activator of nuclear factor kappa B ligand system in cartilage. Arthritis Rheum 2001, 44:2768–2776.

    Article  PubMed  CAS  Google Scholar 

  57. Kobayashi K, Takahashi N, Jimi E, et al.: Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000, 191:275–285.

    Article  PubMed  CAS  Google Scholar 

  58. Lam J, Takeshita S, Barker JE, et al.: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000, 106:1481–1488.

    PubMed  CAS  Google Scholar 

  59. Kim SH, Kim S, Evans CH, et al.: Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL- 4. J Immunol 2001, 166:3499–3505. Emphasizes the arthritis-modifying potential of interleukin-4 engineered dendritic cells.

    PubMed  CAS  Google Scholar 

  60. Morita Y, Yang JM, Gupta R, et al.: Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 2001, 107:1275–1284. Provides suggestive evidence for trafficking of interleukin-4 engineered dendritic cells to lymphoid organs, with impact on arthritis development.

    PubMed  CAS  Google Scholar 

  61. Guery L, Chiocchia G, Batteux F, Boissier MC, Fournier C: Collagen II-pulsed antigen-presenting cells genetically modified to secrete IL-4 down-regulate collagen-induced arthritis. Gene Ther 2001, 8:1855–1862.

    Article  PubMed  CAS  Google Scholar 

  62. Chen Y, Rosloniec E, Goral MI, Boothby M, Chen J: Redirection of T cell effector function in vivo and enhanced collagen-induced arthritis mediated by an IL-2R beta/IL-4R alpha chimeric cytokine receptor transgene. J Immunol 2001, 166:4163–4169.

    PubMed  CAS  Google Scholar 

  63. Relic B, Guicheux J, Mezin F, et al.: IL-4 and IL-13, but not IL- 10, protects human synoviocytes from apoptosis. J Immunol 2001, 166:2775–2782.

    PubMed  CAS  Google Scholar 

  64. Lubberts E, Joosten LAB, Chabaud M, et al.: IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest 2000, 105:1697–1710. Identifies the great cartilage and bone protective potential of interleukin-4 at the site in the joint.

    PubMed  CAS  Google Scholar 

  65. Wei S, Wang MW, Teitelbaum SL, Ross FP: Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J Biol Chem 2002, 277:6622–6630.

    Article  PubMed  CAS  Google Scholar 

  66. Joosten LAB, Lubberts E, Helsen HMA, van den Berg WB: Dual role of IL-12 in early and late stages of murine collagen type II arthritis. J Immunol 1997, 159:4094–4102.

    PubMed  CAS  Google Scholar 

  67. Nakajima A, Seroogy CM, Sandora MR, et al.: Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001, 107:1293–1301. Demonstrates the therapeutic use of antigen specific T cells, engineered to block interleukin-12 and showing trafficking to inflamed sites.

    PubMed  CAS  Google Scholar 

  68. Ortmann RA, Shevach EM: Susceptibility to collagen-induced arthritis: cytokine-mediated regulation. Clin Immunol 2001, 98:109–118.

    Article  PubMed  CAS  Google Scholar 

  69. Johansson ACM, Hansson AS, Nandakumar KS, Backlund J, Holmdahl R: IL-10-deficient B10.Q mice develop more severe collagen-induced arthritis, but are protected from arthritis induced with anti-type II collagen antibodies. J Immunol 2001, 167:3505–3512. This paper illustrates the dual role of interleukin-10 in arthritis.

    PubMed  CAS  Google Scholar 

  70. Lubberts E, Joosten LAB, Van den Bersselaar L, et al.: Intraarticular IL-10 gene transfer regulates the expression of collagen-induced arthritis (CIA) in the knee and ipsilateral paw. Clin Exp Immunol 2000, 120:375–383.

    Article  PubMed  CAS  Google Scholar 

  71. Langdon C, Kerr C, Hassen M, et al.: Murine oncostatin M stimulates mouse synovial fibroblasts in vitro and induces inflammation and destruction in mouse joints in vivo. Am J Pathol 2000, 157:1187–1196.

    PubMed  CAS  Google Scholar 

  72. Plater Zyberk C, Buckton J, Thompson S, et al.: Amelioration of arthritis in two murine models using antibodies to oncostatin M. Arthritis Rheum 2001, 44:2697–2702. The first demonstration of a distinct role of oncostatin M in arthritis.

    Article  PubMed  CAS  Google Scholar 

  73. Li WQ, Dehnade F, Zafarullah M: Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase- 3 genes expression in chondrocytes requires Janus kinase/ STAT signaling pathway. J Immunol 2001, 166:3491–3498.

    PubMed  CAS  Google Scholar 

  74. Yamanishi Y, Boyle DL, Pinkoski MJ, et al.: Regulation of joint destruction and inflammation by p53 in induced arthritis. Am J Pathol 2002, 160:123–130. In vivo identification of the impact of lack of p53 regulation in arthritis.

    PubMed  CAS  Google Scholar 

  75. Pap T, Aupperle KR, Gay S, Firestein GS, Gay RE: Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum 2001, 44:676–681.

    Article  PubMed  CAS  Google Scholar 

  76. Pap T, van der Laan WH, Aupperle KR, et al.: Modulation of fibroblast-mediated cartilage degradation by articular chondrocytes in rheumatoid arthritis. Arthritis Rheum 2000, 43:2531–2536.

    Article  PubMed  CAS  Google Scholar 

  77. Schett-G, Hayer S, Tohidast Akrad M, Schmid BJ, et al.:Adenovirus-based overexpression of tissue inhibitor of metalloproteinases 1 reduces tissue damage in the joints of tumor necrosis factor alpha transgenic mice. Arthritis Rheum 2001, 44:2888–2898.

    Article  PubMed  CAS  Google Scholar 

  78. Apparailly F, Noel D, Millet V, et al.: Paradoxical effects of tissue inhibitor of metalloproteinases 1 gene transfer in collageninduced arthritis. Arthritis Rheum 2001, 44:1444–1454.

    Article  PubMed  CAS  Google Scholar 

  79. Han Z, Boyle DL, Chang L, et al.: c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 2001, 108:73–81. Identifies the efficacy of specific c-Jun N-terminal kinase inhibitors in blockade of tissue destruction.

    Article  PubMed  CAS  Google Scholar 

  80. Shouda T, Yoshida T, Hanada T, et al.: Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest 2001, 108:1781–1788. The first demonstration of the therapeutic efficacy of SOCS3/CIS3 in arthritis.

    Article  PubMed  CAS  Google Scholar 

  81. Gerlag DM, Borges E, Tak PP, et al.: Suppression of murine collagen induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res 2001, 3:357–361.

    Article  PubMed  CAS  Google Scholar 

  82. Bakker A, van de Loo F, Joosten L, et al.: A tropism-modified adenoviral vector increased the effectiveness of gene therapy for arthritis. Gene Ther 2001, 8:1785–1793

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, W.B. Lessons from animal models of arthritis. Curr Rheumatol Rep 4, 232–239 (2002). https://doi.org/10.1007/s11926-002-0070-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0070-5

Keywords

Navigation