Skip to main content

Advertisement

Log in

Recent advances in the biology of addiction

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Recent research into the biologic basis of drug addiction continues to offer considerable promise for understanding how neurochemistry, pharmacology, and molecular biology relate to the reinforcing effects of abused drugs. One area of research is the development and pharmacologic and neurochemical characterization of cocaine and opiate polydrug abuse, a growing subset of the drug abuse population. Considerable advances have also been made in understanding how chronic and persistent drug use induces biochemical and molecular biologic adaptations in brain regions related to drug reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. National Institute on Drug Abuse. National household Survey on Drug Abuse: In Population estimates 1998, US Department of Health and Human Services: Rockville, MD; 1998.

  2. Hemby SE, Dworkin SI, Johnson BA: Neuropharmacological basis of drug reinforcement. In Drug Addiction and Its Treatment: Nexus of Neuroscience and Behavior. Edited by Johnson BA, Roache JD. New York: Raven Press; 1997a:137–169.

    Google Scholar 

  3. DiChiara G, Imperato A: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988, 85:5274–5278.

    Article  CAS  Google Scholar 

  4. Wilson JM, Nobrega JN, Corrigall WA, et al.: Amygdala dopamine levels are markedly elevated after self- but not passiveadministration of cocaine. Brain Res 1994, 668:39–45.

    Article  PubMed  CAS  Google Scholar 

  5. Hemby SE, Co C, Koves T, et al.: Differences in nucleus accumbens extracellular dopamine concentrations between response-dependent and response-independent cocaine administration. Psychopharmacology 1997b, 133:7–16.

    Article  CAS  Google Scholar 

  6. Hemby SE, Martin TJ, Co C, et al.: The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J Pharmacol Exper Ther 1995, 273:591–598.

    CAS  Google Scholar 

  7. Wise RA, Bozarth MA: A psychomotor stimulant theory of addiction. Psych Rev 1987, 94:469–492.

    Article  CAS  Google Scholar 

  8. Porrino LJ: Functional consequences of acute cocaine treatment depend on route of administration. Psychopharmacology 1993, 112:343–351.

    Article  PubMed  CAS  Google Scholar 

  9. Lyons D, Friedman DP, Nader MA, Porrino LJ: Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys. J Neurosci 1996, 16:1230–1238.

    PubMed  CAS  Google Scholar 

  10. Volkow ND, Wang GJ, Fischman MW, et al.: Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 1997, 386:827–830.

    Article  PubMed  CAS  Google Scholar 

  11. Childress AR, Mozley PD, McElgin W, et al.: Limbic activation during cue-induced cocaine craving. Am J Psychiatry 1999, 156:11–18.

    PubMed  CAS  Google Scholar 

  12. Hemby SE, Co C, Dworkin SI, Smith JE: Synergistic elevations in extracellular dopamine concentrations in the nucleus accumbens during self-administration of cocaine/heroin combinations (speedball) in the rat. J Pharmacol Exper Ther 1999, 288:274–280. This paper described the effects of cocaine/heroin combination selfadministration on in vivo dopamine levels in the nucleus accumbens of rats. In vivo microdialysis procedures were used to assess extracellular dopamine levels in this critical brain region during cocaine, heroin, and speedball self-administration.

    CAS  Google Scholar 

  13. Wise RA, Leone P, Rivest R, Leeb K: Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse 1995, 21:140–148.

    Article  PubMed  CAS  Google Scholar 

  14. Xi ZX, Fuller SA, Stein EA: Dopamine release in the nucleus accumbens during heroin self-administration is modulated by kappa opioid receptors: an in vivo fast-cyclic voltammetry study. J Pharmacol Exper Ther 1998, 284:151–161.

    CAS  Google Scholar 

  15. Hemby SE, Smith JE, Dworkin SI: The effect of eticlopride and naltrexone on responding maintained by food, cocaine, heroin and cocaine/heroin combinations in rats. J Pharmacol Exper Ther 1996, 277:1247–1258.

    CAS  Google Scholar 

  16. Mello NK, Negus SS, Lukas SE, Mendelson JH, et al: A primate model of polydrug abuse: cocaine and heroin combinations. J Pharmacol Exper Ther 1995, 274:1325–1337.

    CAS  Google Scholar 

  17. Roberts AJ, Polis IY, Gold LH: Intravenous self-administration of heroin, cocaine, and the combination in Balb/c mice. Eur J Pharmacol 1997, 326:119–125.

    Article  PubMed  CAS  Google Scholar 

  18. Rowlett JK, Wilcox KM, Woolverton WL: Self-administration of cocaine-heroin combinations by rhesus monkeys: antagonism by naltrexone. J Pharmacol Exper Ther 1998, 286:61–69.

    CAS  Google Scholar 

  19. Duvauchelle CL, Sapoznik T, Kornetsky C: The synergistic effects of combining cocaine and heroin ("speedball") using a progressive-ratio schedule of drug reinforcement. Pharmacol Biochem Behav 1998, 61:297–302.

    Article  PubMed  CAS  Google Scholar 

  20. Mello NK, Negus SS: The effects of buprenorphine on selfadministration of cocaine and heroin “speedball” combinations and heroin alone by rhesus monkeys. J Pharmacol Exper Ther 1998, 285:444–456.

    CAS  Google Scholar 

  21. Schottenfeld RS, Pakes JR, Oliveto A, et al.: Buprenorphine vs methadone maintenance treatment for concurrent opioid dependence and cocaine abuse. Arch Gen Psychiatry 1997, 54:713–720.

    PubMed  CAS  Google Scholar 

  22. Kalivas PW, Duffy P: Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J Neurosci 1993, 13:276–284.

    PubMed  CAS  Google Scholar 

  23. Parsons LH, Koob GF, Weiss F: Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exper Ther 1995, 274:1182–1191.

    CAS  Google Scholar 

  24. Gao WY, Lee TH, King GR, Ellinwood EH: Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacology 1998, 18:222–232.

    Article  PubMed  CAS  Google Scholar 

  25. Peris J, Boyson SJ, Cass WA, et al.: Persistence of neurochemical changes in dopamine systems after repeated cocaine administration. J Pharmacol Exper Ther 1990, 253:38–44.

    CAS  Google Scholar 

  26. Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP: Effect of cocaine self-administration on dopamine D2 receptors in rhesus monkeys. Synapse 1998, 30:88–96.

    Article  PubMed  CAS  Google Scholar 

  27. Nestler EJ: Under siege: the brain on opiates. Neuron 1996, 16:897–900.

    Article  PubMed  CAS  Google Scholar 

  28. Nestler EJ, Terwilliger RZ, Walker JR, et al.: Chronic cocaine treatment decreases levels of the G protein subunits Gi alpha and Go alpha in discrete regions of rat brain. J Neurochem 1990, 55:1079–1082.

    Article  PubMed  CAS  Google Scholar 

  29. Striplin CD, Kalivas PW: Correlation between behavioral sensitization to cocaine and G protein ADP-ribosylation in the ventral tegmental area. Brain Res 1992, 579:181–186.

    Article  PubMed  CAS  Google Scholar 

  30. Terwilliger RZ, Beitner-Johnson D, Sevarino KA, et al.: A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 1991, 548:100–110.

    Article  PubMed  CAS  Google Scholar 

  31. Nestler EJ, Hope BT, Widnell KL: Drug addiction: a model for the molecular basis of neural plasticity. Neuron 1993, 11:995–1006.

    Article  PubMed  CAS  Google Scholar 

  32. Self DW, Nestler EJ: Molecular mechanisms of drug reinforcement and addiction. Ann Rev Neurosci 1995, 18:463–495.

    Article  PubMed  CAS  Google Scholar 

  33. Guitart X, Beitner-Johnson D, Marby DW, et al.: Fischer and Lewis rat strains differ in basal levels of neurofilament proteins and their regulation by chronic morphine in the mesolimbic dopamine system. Synapse 1992, 12:242–253.

    Article  PubMed  CAS  Google Scholar 

  34. Widnell KL, Self DW, Lane SB, et al.: Regulation of CREB expression: in vivo evidence for a functional role in morphine action in the nucleus accumbens. J Pharmacol Exp Ther 1995, 276:306–315.

    Google Scholar 

  35. Self DW, Terwilliger RZ, Nestler EJ, Stein L: Inactivation of Gi and G(o) proteins in nucleus accumbens reduces both cocaine and heroin reinforcement. J Neurosci 1994, 14:6239–6247.

    PubMed  CAS  Google Scholar 

  36. Carlezon WA Jr, Boundy VA, Haile CN, et al.: Sensitization to morphine induced by viral-mediated gene transfer. Science 1997, 277:812–814.

    Article  PubMed  CAS  Google Scholar 

  37. Carlezon WA Jr, Thome J, Olson VG, et al.: Regulation of cocaine reward by CREB. Science 1998, 282:2272–2275. This paper demonstrated a causal relationship between alterations in CREB in the nucleus accumbens and the rewarding effects of cocaine. Behavioral procedures were combined with molecular and biochemical approaches to study the effect of viral mediated gene transfer of wild-type CREB and a transdominant negative CREB on cocaine reward.

    Article  PubMed  CAS  Google Scholar 

  38. Buzas B, Rosenberger J, Cox BM: Mu and delta opioid receptor gene expression after chronic treatment with opioid agonist. Neuroreport 1996, 7:1505–1508.

    Article  PubMed  CAS  Google Scholar 

  39. Castelli MP, Melis M, Mameli M, et al.: Chronic morphine and naltrexone fail to modify mu-opioid receptor mRNA levels in the rat brain. Mol Brain Res 1997, 45:149–153.

    Article  PubMed  CAS  Google Scholar 

  40. Liu J, Nickolenko J, Sharp FR: Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 1994, 91:8537–8541.

    Article  PubMed  CAS  Google Scholar 

  41. Roumaldi P, Lesa G, Ferri S: Chronic opiate agonists down-regulate prodynorphin gene expression in the rat brain. Brain Res 1991, 563:132–136.

    Article  Google Scholar 

  42. Turchan J, Lason W, Budziszewska B, Przewlocka B: Effects of single and repeated morphine administration on the prodynorphin, proenkephalin and dopamine D2 receptor gene expression in the mouse brain. Neuropeptides 1997, 31:24–28.

    Article  PubMed  CAS  Google Scholar 

  43. Tjon GH, Voorn P, Vanderschuren LJ. et al.: Delayed occurrence of enhanced striatal preprodynorphin gene expression in behaviorally sensitized rats: differential long-term effects of intermittent and chronic morphine administration. Neuroscience 1997, 76:167–176.

    Article  PubMed  CAS  Google Scholar 

  44. Przewlocka B, Turchan J, Lason W, Przewlocki R: The effect of single and repeated morphine administration on the prodynorphin system activity in the nucleus accumbens and striatum of the rat. Neuroscience 1996, 70:749–754.

    Article  PubMed  CAS  Google Scholar 

  45. Konradi C, Kobierski LA, Nguyen TV, et al.: The cAMPresponse-element-binding protein interacts, but Fos protein does not interact, with the proenkephalin enhancer in the rat striatum. Proc Natl Acad Sci USA 1993, 90:70005–7009.

    Article  Google Scholar 

  46. Ahn S, Olive M, Aggarwal, et al.: A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Bio 1998, 18:967–977.

    CAS  Google Scholar 

  47. Cole RL, Konradi C, Douglass J, Hyman SE: Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 1995, 14:813–823.

    Article  PubMed  CAS  Google Scholar 

  48. Turgeon SM, Pollack AE, Fink JS: Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res 1997, 749:120–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemby, S.E. Recent advances in the biology of addiction. Curr Psychiatry Rep 1, 159–165 (1999). https://doi.org/10.1007/s11920-999-0026-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-999-0026-9

Keywords

Navigation