Skip to main content

Advertisement

Log in

Neuroimaging the Menstrual Cycle and Premenstrual Dysphoric Disorder

  • Women's Mental Health (CN Epperson, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Knowledge of gonadal hormone-related influences on human brain anatomy, function, and chemistry is scarce. The present review scrutinized organizational and functional neuroimaging correlates of the menstrual cycle and premenstrual dysphoric disorder (PMDD). Supportive evidence of cyclic short-term structural and functional brain plasticity in response to gonadal hormonal modulation is provided. The paucity of studies, sparsity and discordance of findings, and weaknesses in study design at present hinder the drawing of firm conclusions. Ideal study designs should comprise high-resolution multimodal neuroimaging (e.g., MRI, DTI, rs-fMRI, fMRI, PET), hormones, genetic, and behavioral longitudinal assessments of healthy women and PMDD patients at critical time points of the menstrual cycle phase (i.e., early follicular phase, late follicular phase, mid-luteal phase) in a counter-balanced setup. Studies integrating large-scale brain network structural, functional, and molecular neuroimaging, as well as treatment data, will deepen the understanding of neural state, disorder, and treatment markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282–3.

    Article  PubMed  Google Scholar 

  2. Toffoletto S, Lanzenberger R, Gingnell M, Sundstrom-Poromaa I, Comasco E. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review. Psychoneuroendocrinology. 2014;50:28–52. Comprehensive review of fMRI studies of emotion processing and cognitive functioning in relation to endogenous and exogenous estrogen and progesterone in healthy and premenstrual dysphoric disorder women.

    Article  CAS  PubMed  Google Scholar 

  3. Savic I. Sex differences in the human brain, their underpinnings and implications. Progress in Brain Research. Elsevier; 2010.

  4. Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci. 2006;7(6):477–84.

    Article  CAS  PubMed  Google Scholar 

  5. Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev. 2010;62(2):155–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sundstrom Poromaa I, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing-from a reproductive perspective. Front Neurosci. 2014;8:380.

    PubMed Central  PubMed  Google Scholar 

  7. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62(8):847–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pletzer B. Sex-specific strategy use and global–local processing: a perspective toward integrating sex differences in cognition. Front Neurosci. 2014;8:425.

    PubMed Central  PubMed  Google Scholar 

  9. Wang J, Korczykowski M, Rao H, Fan Y, Pluta J, Gur RC, et al. Gender difference in neural response to psychological stress. Soc Cogn Affect Neurosci. 2007;2(3):227–39.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Epperson CN. Premenstrual dysphoric disorder and the brain. Am J Psychiatry. 2013;170(3):248–52.

    Article  PubMed Central  PubMed  Google Scholar 

  11. A.P.A. Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5) 2013.

  12. Epperson CN, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I, et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry. 2012;169(5):465–75.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Pearlstein T, Steiner M. Premenstrual dysphoric disorder: burden of illness and treatment update. J Psychiatry Neurosci : JPN. 2008;33(4):291–301.

    PubMed Central  PubMed  Google Scholar 

  14. Halbreich U, Borenstein J, Pearlstein T, Kahn LS. The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology. 2003;28 Suppl 3:1–23.

    CAS  Google Scholar 

  15. Cunningham J, Yonkers KA, O'Brien S, Eriksson E. Update on research and treatment of premenstrual dysphoric disorder. Harv Rev Psychiatry. 2009;17(2):120–37.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Yonkers KA, O'Brien PM, Eriksson E. Premenstrual syndrome. Lancet. 2008;371(9619):1200–10.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wittchen HU, Becker E, Lieb R, Krause P. Prevalence, incidence and stability of premenstrual dysphoric disorder in the community. Psychol Med. 2002;32(1):119–32.

    Article  Google Scholar 

  18. Kendler KS, Karkowski LM, Corey LA, Neale MC. Longitudinal population-based twin study of retrospectively reported premenstrual symptoms and lifetime major depression. Am J Psychiatry. 1998;155(9):1234–40.

    Article  CAS  PubMed  Google Scholar 

  19. Halbreich U. Selective serotonin reuptake inhibitors and initial oral contraceptives for the treatment of PMDD: effective but not enough. CNS Spectrums. 2008;13(7):566–72.

    Article  PubMed  Google Scholar 

  20. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol. 2008;29(2):313–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  22. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006;7(10):818–27.

    Article  CAS  PubMed  Google Scholar 

  23. Rasetti R, Weinberger DR. Intermediate phenotypes in psychiatric disorders. Curr Opin Gene Dev. 2011;21(3):340–8.

    Article  CAS  Google Scholar 

  24. Pine DS, Leibenluft E. Biomarkers With a Mechanistic Focus. JAMA Psychiatry. 2015.

  25. Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009;326(5951):399–403.

    Article  CAS  PubMed  Google Scholar 

  26. Fox PT, Friston KJ. Distributed processing; distributed functions? Neuroimage. 2012;61(2):407–26.

    Article  PubMed  Google Scholar 

  27. Gibbs RB. Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev. 2010;31(2):224–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wnuk A, Korol DL, Erickson KI. Estrogens, hormone therapy, and hippocampal volume in postmenopausal women. Maturitas. 2012;73(3):186–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Voytko ML, Tinkler GP, Browne C, Tobin JR. Neuroprotective effects of estrogen therapy for cognitive and neurobiological profiles of monkey models of menopause. Am J Primatol. 2009;71(9):794–801.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Daniel JM. Estrogens, estrogen receptors, and female cognitive aging: the impact of timing. Horm Behav. 2013;63(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lisofsky N, Martensson J, Eckert A, Lindenberger U, Gallinat J, Kuhn S. Hippocampal volume and functional connectivity changes during the female menstrual cycle. NeuroImage. 2015;118:154–62. Multimodal neuroimaging study of healthy women assessed longitudinally four times during the menstrual cycle for grey matter morphometry, white matter organization and functional connectivity.

    Article  PubMed  Google Scholar 

  32. Pletzer B, Kronbichler M, Aichhorn M, Bergmann J, Ladurner G, Kerschbaum HH. Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res. 2010;1348:55–62.

    Article  CAS  PubMed  Google Scholar 

  33. Protopopescu X, Butler T, Pan H, Root J, Altemus M, Polanecsky M, et al. Hippocampal structural changes across the menstrual cycle. Hippocampus. 2008;18(10):985–8.

    Article  PubMed  Google Scholar 

  34. Comasco E, Frokjaer VG, Sundstrom-Poromaa I. Functional and molecular neuroimaging of menopause and hormone replacement therapy. Front Neurosci. 2014;8:388.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hagemann G, Ugur T, Schleussner E, Mentzel HJ, Fitzek C, Witte OW, et al. Changes in brain size during the menstrual cycle. PLoS One. 2011;6(2):e14655.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ossewaarde L, van Wingen GA, Rijpkema M, Backstrom T, Hermans EJ, Fernandez G. Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp. 2013;34(5):1187–93.

    Article  PubMed  Google Scholar 

  37. De Bondt T, Jacquemyn Y, Van Hecke W, Sijbers J, Sunaert S, Parizel PM. Regional gray matter volume differences and sex-hormone correlations as a function of menstrual cycle phase and hormonal contraceptives use. Brain Res. 2013;1530:22–31.

    Article  PubMed  CAS  Google Scholar 

  38. Petersen N, Touroutoglou A, Andreano JM, Cahill L. Oral contraceptive pill use is associated with localized decreases in cortical thickness. Hum Brain Mapp. 2015;36(7):2644–54.

    Article  PubMed  Google Scholar 

  39. Berman SM, London ED, Morgan M, Rapkin AJ. Elevated gray matter volume of the emotional cerebellum in women with premenstrual dysphoric disorder. J Affect Disord. 2013;146(2):266–71.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Jeong HG, Ham BJ, Yeo HB, Jung IK, Joe SH. Gray matter abnormalities in patients with premenstrual dysphoric disorder: an optimized voxel-based morphometry. J Affect Disord. 2012;140(3):260–7.

    Article  PubMed  Google Scholar 

  41. Peper JS, van den Heuvel MP, Mandl RC, Hulshoff Pol HE, van Honk J. Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology. 2011;36(8):1101–13.

    Article  CAS  PubMed  Google Scholar 

  42. De Bondt T, Van Hecke W, Veraart J, Leemans A, Sijbers J, Sunaert S, et al. Does the use of hormonal contraceptives cause microstructural changes in cerebral white matter? Preliminary results of a DTI and tractography study. Eur Radiol. 2013;23(1):57–64.

    Article  PubMed  Google Scholar 

  43. Reiman EM, Armstrong SM, Matt KS, Mattox JH. The application of positron emission tomography to the study of the normal menstrual cycle. Hum Reprod. 1996;11(12):2799–805.

    Article  CAS  PubMed  Google Scholar 

  44. Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12(1):43–56.

    Article  CAS  PubMed  Google Scholar 

  45. Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS One. 2014;9(7):e103492.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Arelin K, Mueller K, Barth C, Rekkas PV, Kratzsch J, Burmann I et al. Progesterone mediates brain functional connectivity changes during the menstrual cycle - a pilot resting state MRI study. Frontiers in neuroscience. 2015. One-subject study of resting state brain connectivity across the menstrual cycle.

  47. Petersen N, Kilpatrick LA, Goharzad A, Cahill L. Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity. NeuroImage. 2014;90:24–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Sacher J, Okon-Singer H, Villringer A. Evidence from neuroimaging for the role of the menstrual cycle in the interplay of emotion and cognition. Front Hum Neurosci. 2013;7(374):00374.

    Google Scholar 

  49. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9(5):242–9.

    Article  PubMed  Google Scholar 

  50. Amin Z, Epperson CN, Constable RT, Canli T. Effects of estrogen variation on neural correlates of emotional response inhibition. Neuroimage. 2006;32(1):457–64.

    Article  PubMed  Google Scholar 

  51. Weis S, Hausmann M. Sex hormones: modulators of interhemispheric inhibition in the human brain. Neuroscientist. 2010;16(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  52. Weis S, Hausmann M, Stoffers B, Sturm W. Dynamic changes in functional cerebral connectivity of spatial cognition during the menstrual cycle. Hum Brain Mapp. 2011;32(10):1544–56.

    Article  PubMed  Google Scholar 

  53. Baller EB, Wei SM, Kohn PD, Rubinow DR, Alarcon G, Schmidt PJ, et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. Am J Psychiatry. 2013;170(3):305–14. Multimodal PET and fMRI study indicating neural correlates of PMDD diagnosis and symptoms.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.

    Article  PubMed  Google Scholar 

  55. Andreano JM, Cahill L. Menstrual cycle modulation of medial temporal activity evoked by negative emotion. NeuroImage. 2010;53(4):1286–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Gingnell M, Morell A, Bannbers E, Wikstrom J, Sundstrom PI. Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder. Horm Behav. 2012;62(4):400–6.

    Article  PubMed  Google Scholar 

  57. van Wingen G, van Broekhoven F, Verkes RJ, Petersson KM, Backstrom T, Buitelaar J, et al. How progesterone impairs memory for biologically salient stimuli in healthy young women. J Neurosci. 2007;27(42):11416–23.

    Article  PubMed  CAS  Google Scholar 

  58. van Wingen GA, van Broekhoven F, Verkes RJ, Petersson KM, Backstrom T, Buitelaar JK, et al. Progesterone selectively increases amygdala reactivity in women. Mol Psychiatry. 2008;13(3):325–33.

    Article  PubMed  CAS  Google Scholar 

  59. Ossewaarde L, Hermans EJ, van Wingen GA, Kooijman SC, Johansson IM, Backstrom T, et al. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle. Psychoneuroendocrinology. 2010;35(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  60. Gingnell M, Ahlstedt V, Bannbers E, Wikstrom J, Sundstrom-Poromaa I, Fredrikson M. Social stimulation and corticolimbic reactivity in premenstrual dysphoric disorder: a preliminary study. Biol Mood Anxiety Disord. 2014;4(1):3.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. A scholar review of functional brain networks: DMN, SN, and CEN.

    Article  PubMed  Google Scholar 

  62. Goldstein JM, Jerram M, Poldrack R, Ahern T, Kennedy DN, Seidman LJ, et al. Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci. 2005;25(40):9309–16.

    Article  CAS  PubMed  Google Scholar 

  63. Landen M, Eriksson E. How does premenstrual dysphoric disorder relate to depression and anxiety disorders? Depress Anxiety. 2003;17(3):122–9.

    Article  PubMed  Google Scholar 

  64. Comasco E, Hahn A, Ganger S, Gingnell M, Bannbers E, Oreland L, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder. Human Brain Mapping. 2014;35(9):4450–8. First neuroimaging genetic study of PMDD showing an involvement of BDNF genotype on emotion processing in the anterior cingulate cortex during the luteal phase in PMDD patients.

    Article  PubMed  Google Scholar 

  65. Gingnell M, Bannbers E, Wikstrom J, Fredrikson M, Sundstrom-Poromaa I. Premenstrual dysphoric disorder and prefrontal reactivity during anticipation of emotional stimuli. Eur Neuropsychopharmacol. 2013;17(13):00215.

    Google Scholar 

  66. Epperson CN, Pittman B, Czarkowski KA, Stiklus S, Krystal JH, Grillon C. Luteal-phase accentuation of acoustic startle response in women with premenstrual dysphoric disorder. Neuropsychopharmacology. 2007;32(10):2190–8.

    Article  PubMed Central  PubMed  Google Scholar 

  67. de Frias CM, Nilsson LG, Herlitz A. Sex differences in cognition are stable over a 10-year period in adulthood and old age. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2006;13(3–4):574–87.

    Article  PubMed  Google Scholar 

  68. Hampson E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn. 1990;14(1):26–43.

    Article  CAS  PubMed  Google Scholar 

  69. Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009;55(5):570–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Berenbaum SA, Beltz AM. Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front Neuroendocrinol. 2011;32(2):183–200.

    Article  CAS  PubMed  Google Scholar 

  71. Shepard RN, Metzler J. Mental rotation of three-dimensional objects. Science. 1971;171(3972):701–3.

    Article  CAS  PubMed  Google Scholar 

  72. Thimm M, Weis S, Hausmann M, Sturm W. Menstrual cycle effects on selective attention and its underlying cortical networks. Neuroscience. 2014;258:307–17.

    Article  CAS  PubMed  Google Scholar 

  73. Weis S, Hausmann M, Stoffers B, Vohn R, Kellermann T, Sturm W. Estradiol modulates functional brain organization during the menstrual cycle: an analysis of interhemispheric inhibition. J Neurosci. 2008;28(50):13401–10.

    Article  CAS  PubMed  Google Scholar 

  74. Okon-Singer H, Hendler T, Pessoa L, Shackman AJ. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Hum Neurosci. 2015;9:58.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Lam RW, Kennedy SH, Mclntyre RS, Khullar A. Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry. 2014;59(12):649–54.

    PubMed Central  PubMed  Google Scholar 

  76. Bannbers E, Gingnell M, Engman J, Morell A, Comasco E, Kask K, et al. The effect of premenstrual dysphoric disorder and menstrual cycle phase on brain activity during response inhibition. J Affect Disord. 2012;142(1–3):347–50.

    Article  PubMed  Google Scholar 

  77. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9:37.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Khayum MA, de Vries EF, Glaudemans AW, Dierckx RA, Doorduin J. In vivo imaging of brain estrogen receptors in rats: a 16alpha-18F-fluoro-17beta-estradiol PET study. J Nuclear Med :Off Publ, Soc Nucl Med. 2014;55(3):481–7. PET tracer for neuroimaging of the estrogen receptor in the brain of rodents, and potentially humans.

    Article  CAS  Google Scholar 

  79. Takahashi K, Hosoya T, Onoe K, Doi H, Nagata H, Hiramatsu T, et al. 11C-cetrozole: an improved C-11C-methylated PET probe for aromatase imaging in the brain. J Nucl Med : Off Publ, Soc Nucl Med. 2014;55(5):852–7.

    Article  CAS  Google Scholar 

  80. Biegon A, Alexoff DL, Kim SW, Logan J, Pareto D, Schlyer D, et al. Aromatase imaging with [N-methyl-11C]vorozole PET in healthy men and women. J Nucl Med : Off Publ, Soc Nucl Med. 2015;56(4):580–5.

    Article  CAS  Google Scholar 

  81. Balthazart J, Ball GF. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci. 1998;21(6):243–9.

    Article  CAS  PubMed  Google Scholar 

  82. Cornil CA. Rapid regulation of brain oestrogen synthesis: the behavioural roles of oestrogens and their fates. J Neuroendocrinol. 2009;21(3):217–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Roselli CE, Liu M, Hurn PD. Brain aromatization: classic roles and new perspectives. Semin Reprod Med. 2009;27(3):207–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Harada M, Kubo H, Nose A, Nishitani H, Matsuda T. Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp. 2011;32(5):828–33.

    Article  PubMed  Google Scholar 

  85. Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, et al. Cortical y-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: A 1H-MRS study. Arch Gene Psychiatry. 2002;59(9):851–8. The first study neuroimaging GABA in relation to the menstrual cycle and PMDD.

    Article  CAS  Google Scholar 

  86. De Bondt T, De Belder F, Vanhevel F, Jacquemyn Y, Parizel PM. Prefrontal GABA concentration changes in women-Influence of menstrual cycle phase, hormonal contraceptive use, and correlation with premenstrual symptoms. Brain Res. 2015;1597:129–38.

    Article  PubMed  CAS  Google Scholar 

  87. Batra NA, Seres-Mailo J, Hanstock C, Seres P, Khudabux J, Bellavance F, et al. Proton magnetic resonance spectroscopy measurement of brain glutamate levels in premenstrual dysphoric disorder. Biol Psychiatry. 2008;63(12):1178–84.

    Article  CAS  PubMed  Google Scholar 

  88. Rasgon NL, Thomas MA, Guze BH, Fairbanks LA, Yue K, Curran JG, et al. Menstrual cycle-related brain metabolite changes using 1H magnetic resonance spectroscopy in premenopausal women: a pilot study. Psychiatry Res. 2001;106(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  89. Chrzan R, Tomaszuk M, Urbanik A. The influence of the menstrual cycle on the result of brain examination with hydrogen magnetic resonance spectroscopy - a pilot study. Neurol Neurochir Pol. 2013;47(5):450–5.

    CAS  PubMed  Google Scholar 

  90. Jovanovic H, Cerin A, Karlsson P, Lundberg J, Halldin C, Nordstrom AL. A PET study of 5-HT1A receptors at different phases of the menstrual cycle in women with premenstrual dysphoria. Psychiatry Res. 2006;148(2–3):185–93.

    Article  CAS  PubMed  Google Scholar 

  91. Jovanovic H, Karlsson P, Cerin A, Halldin C, Nordstrom AL. 5-HT(1A) receptor and 5-HTT binding during the menstrual cycle in healthy women examined with [(11)C] WAY100635 and [(11)C] MADAM PET. Psychiatry Res. 2009;172(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  92. Moses-Kolko EL, Price JC, Shah N, Berga S, Sereika SM, Fisher PM, et al. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology. 2011;36(13):2729–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Nordstrom AL, Olsson H, Halldin C. A PET study of D2 dopamine receptor density at different phases of the menstrual cycle. Psychiatry Res. 1998;83(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  94. Eriksson O, Wall A, Marteinsdottir I, Agren H, Hartvig P, Blomqvist G, et al. Mood changes correlate to changes in brain serotonin precursor trapping in women with premenstrual dysphoria. Psychiatry Res. 2006;146(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  95. Liu B, Wang G, Gao D, Gao F, Zhao B, Qiao M, et al. Alterations of GABA and glutamate-glutamine levels in premenstrual dysphoric disorder: a 3T proton magnetic resonance spectroscopy study. Psychiatry Res. 2015;231(1):64–70.

    Article  PubMed  Google Scholar 

  96. Jacobs E, D'Esposito M. Estrogen shapes dopamine-dependent cognitive processes: implications for women's health. J Neurosci. 2011;31(14):5286–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Bath KG, Chuang J, Spencer-Segal JL, Amso D, Altemus M, McEwen BS, et al. Variant brain-derived neurotrophic factor (Valine66Methionine) polymorphism contributes to developmental and estrous stage-specific expression of anxiety-like behavior in female mice. Biol Psychiatry. 2012;72(6):499–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Brown J, O' Brien PM, Marjoribanks J, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2009;2:CD001396.

    PubMed  Google Scholar 

  99. Nordquist N, Oreland L. Serotonin, genetic variability, behaviour, and psychiatric disorders—a review. Ups J Med Sci. 2010;115(1):2–10.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Sundstrom-Poromaa I, Bixo M, Bjorn I, Nordh O. Compliance to antidepressant drug therapy for treatment of premenstrual syndrome. J Psychosom Obstet Gynaecol. 2000;21(4):205–11.

    Article  CAS  PubMed  Google Scholar 

  101. Wyatt KM, Dimmock PW, Ismail KM, Jones PW, O'Brien PM. The effectiveness of GnRHa with and without 'add-back' therapy in treating premenstrual syndrome: a meta analysis. BJOG. 2004;111(6):585–93.

    Article  CAS  PubMed  Google Scholar 

  102. Segebladh B, Borgstrom A, Nyberg S, Bixo M, Sundstrom-Poromaa I. Evaluation of different add-back estradiol and progesterone treatments to gonadotropin-releasing hormone agonist treatment in patients with premenstrual dysphoric disorder. Am J Obstet Gynecol. 2009;201(2):139 e1–8.

    Article  PubMed  CAS  Google Scholar 

  103. Andreen L, Bixo M, Nyberg S, Sundstrom-Poromaa I, Backstrom T. Progesterone effects during sequential hormone replacement therapy. Eur J Endocrinol. 2003;148(5):571–7.

    Article  CAS  PubMed  Google Scholar 

  104. Andreen L, Sundstrom-Poromaa I, Bixo M, Andersson A, Nyberg S, Backstrom T. Relationship between allopregnanolone and negative mood in postmenopausal women taking sequential hormone replacement therapy with vaginal progesterone. Psychoneuroendocrinology. 2005;30(2):212–24.

    Article  CAS  PubMed  Google Scholar 

  105. Andreen L, Sundstrom-Poromaa I, Bixo M, Nyberg S, Backstrom T. Allopregnanolone concentration and mood—a bimodal association in postmenopausal women treated with oral progesterone. Psychopharmacology (Berl). 2006;187(2):209–21.

    Article  CAS  Google Scholar 

  106. Baroncini M, Jissendi P, Catteau-Jonard S, Dewailly D, Pruvo JP, Francke JP, et al. Sex steroid hormones-related structural plasticity in the human hypothalamus. NeuroImage. 2010;50(2):428–33.

    Article  CAS  PubMed  Google Scholar 

  107. Henderson VW, Greicius MD. Functional magnetic resonance imaging and estrogen effects on the brain: cautious interpretation of a BOLD finding. Menopause. 2010;17(4):669–71.

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was partially supported by funds from the Swedish Society of Medicine (SLS-331991), Marta Lundqvist and Tore Nilson foundation, and the Swedish Council for Working Life and Social Research to E.C. (FAS: 2011–0627), and the Swedish Research Council to I.SP. (VR: 521-2013-2339).

Compliance with Ethics Guidelines

Conflict of Interest

Erika Comasco has no conflict of interest to declare.

Inger Sundström-Poromaa serves occasionally on advisory boards or act as invited speaker at scientific meetings for MSD, Novo Nordisk, Bayer Health Care, and Lundbeck A/S.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Comasco.

Additional information

This article is part of the Topical Collection on Women’s Mental Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comasco, E., Sundström-Poromaa, I. Neuroimaging the Menstrual Cycle and Premenstrual Dysphoric Disorder. Curr Psychiatry Rep 17, 77 (2015). https://doi.org/10.1007/s11920-015-0619-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0619-4

Keywords

Navigation