Skip to main content
Log in

Recent Advances in Neuroimaging to Model Eating Disorder Neurobiology

  • Eating Disorders (C Grilo, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The eating disorders (EDs) anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) are severe psychiatric disorders with high mortality. There are many symptoms, such as food restriction, episodic binge eating, purging, or excessive exercise that are either overlapping or lie on opposite ends of a scale or spectrum across those disorders. Identifying how specific ED behaviors are linked to particular neurobiological mechanisms could help better categorize ED subgroups and develop specific treatments. This review provides support from recent brain imaging research that brain structure and function measures can be linked to disorder-specific biological or behavioral variables, which may help distinguish ED subgroups, or find commonalities between them. Brain structure and function may therefore be suitable research targets to further study the relationship between dimensions of behavior and brain function relevant to EDs and beyond the categorical AN, BN, and BED distinctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5(TM)). 5th ed. 2013, Arlington, Va.: American Psychiatric Publishing; 5 edition (May 27, 2013)

  2. Agras WS et al. A 4-year prospective study of eating disorder NOS compared with full eating disorder syndromes. Int J Eat Disord. 2009;42(6):565–70.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kaye WH et al. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110–20.

    Article  CAS  PubMed  Google Scholar 

  4. Agras W et al. Report of the National Institutes of Health workshop on overcoming barriers to treatment research in anorexia nervosa. Int J Eat Disord. 2004;35(4):509–21.

    Article  PubMed  Google Scholar 

  5. Ohman A et al. On the unconscious subcortical origin of human fear. Phys Behav. 2007;92(1–2):180–5.

    Article  Google Scholar 

  6. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171(8):829–43.

    Article  PubMed  Google Scholar 

  7. Rive MM et al. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2529–53.

    Article  PubMed  Google Scholar 

  8. Chau DT, Roth RM, Green AI. The neural circuitry of reward and its relevance to psychiatric disorders. Curr Psychiatry Rep. 2001;6:391–9.

    Article  Google Scholar 

  9. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306–11.

    CAS  PubMed  Google Scholar 

  10. Takahashi YK et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron. 2009;62(2):269–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Alvarez J, Emory E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Jun 1. Neuropsychol Rev, 2006.

  12. Van den Eynde F et al. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eati Disord Rev J Eat Disord Assoc. 2012;20(2):94–105. This review is very important as it described very clearly the heterogenity in structural brain research in anorexia nervosa.

    Article  Google Scholar 

  13. Brooks SJ et al. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study. BMC Psychiatry. 2011;11:179.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Joos A et al. Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res. 2010;182(2):146–51.

    Article  PubMed  Google Scholar 

  15. Suchan B et al. Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res. 2010;206(1):63–7.

    Article  PubMed  Google Scholar 

  16. Friederich HC et al. Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage. 2012;59(2):1106–13.

    Article  PubMed  Google Scholar 

  17. Fonville L et al. Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration. Psychol Med. 2014;44(9):1965–75.

    Article  CAS  PubMed  Google Scholar 

  18. Amianto F et al. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study. Psychiatry Res. 2013;213(3):210–6.

    Article  PubMed  Google Scholar 

  19. Marsh R et al. Anatomical characteristics of the cerebral surface in bulimia nervosa. Biol Psychiatry. 2013.

  20. Streitburger DP et al. Investigating structural brain changes of dehydration using voxel-based morphometry. PLoS One. 2012;7(8):e44195.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Freund W et al. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project. BMC Med. 2012;10:170.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Frank GK et al. Alterations in brain structures related to taste reward circuitry in Ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry, 2013. This study is important as it for the first time contrasted nutritionally highly controlled ill and recovered anorexia and ill bulimia subjects on structural brain volume suggesting common alterations across eating disorder groups.

  23. Frank GK et al. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J Am Acad Child Adolesc Psychiatry. 2013;52(10):1066–1075 e5. This study is important as it confirmed in youth with anorexia nervosa larger orbitofrontal and insula cortical volumes previously found in adults.

  24. Shott ME et al. Orbitofrontal cortex volume and brain reward response in obesity. Int J Obes (Lond). 2014.

  25. Plassmann H, O’Doherty JP, Rangel A. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J Neurosci Off J Soc Neurosci. 2010;30(32):10799–808.

    Article  CAS  Google Scholar 

  26. Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95(2):131–64.

    Article  CAS  PubMed  Google Scholar 

  27. Frank GK et al. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology. 2012;37(9):2031–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Frank GK et al. Altered temporal difference learning in bulimia nervosa. Biol Psychiatry. 2011;70(8):728–35.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Craig AD. How do you feel–now? The anterior insula and human awareness. Nature reviews. Neuroscience. 2009;10(1):59–70.

    CAS  PubMed  Google Scholar 

  30. Wang GJ et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39(4):1824–31.

    Article  PubMed  Google Scholar 

  31. Devue C et al. Here I am: the cortical correlates of visual self-recognition. Brain Res. 2007;1143:169–82.

    Article  CAS  PubMed  Google Scholar 

  32. Critchley HD et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  33. Konstantakopoulos G et al. Delusionality of body image beliefs in eating disorders. Psychiatry Res. 2012;200(2–3):482–8.

    Article  PubMed  Google Scholar 

  34. Kringelbach ML. Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience. 2004;126(4):807–19.

    Article  CAS  PubMed  Google Scholar 

  35. Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20(1):1–25.

    Article  CAS  PubMed  Google Scholar 

  36. Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 2005;86(1–2):11–4.

    Article  CAS  PubMed  Google Scholar 

  37. Lak A, Stauffer WR, Schultz W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc Natl Acad Sci U S A. 2014;111(6):2343–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kringelbach ML, Rolls E. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72(5):341–72.

    Article  PubMed  Google Scholar 

  39. Rolls ET. Taste, olfactory and food texture reward processing in the brain and obesity. Int J Obes. 2011;35(4):550–61.

    Article  CAS  Google Scholar 

  40. O’Reilly RC. Biologically based computational models of high-level cognition. Science. 2006;314(5796):91–4.

    Article  PubMed  Google Scholar 

  41. Garcia-Garcia I et al. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur Eat Disord Rev. 2013;21(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  42. Lawson EA et al. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J Clin Endocrinol Metab. 2012;97(10):E1898–908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schienle A et al. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry. 2009;65(8):654–61.

    Article  PubMed  Google Scholar 

  44. Weygandt M et al. Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp. 2012;33(9):2135–46.

    Article  PubMed  Google Scholar 

  45. Filbey FM, Myers US, Dewitt S. Reward circuit function in high BMI individuals with compulsive overeating: similarities with addiction. Neuroimage. 2012;63(4):1800–6.

    Article  PubMed  Google Scholar 

  46. Balodis IM et al. A pilot study linking reduced fronto-striatal recruitment during reward processing to persistent bingeing following treatment for binge-eating disorder. Int J Eat Disord. 2014;47(4):376–84.

    Article  PubMed  Google Scholar 

  47. Cowdrey FA et al. Increased Neural Processing of Rewarding and Aversive Food Stimuli in Recovered Anorexia Nervosa. Biological Psychiatry, 2011. This study is important as it described random taste reward application in recovered anorexia nervosa.

  48. Oberndorfer TA et al. Altered Insula Response to Sweet Taste Processing After Recovery From Anorexia and Bulimia Nervosa. Am J Psychiatry, 2013. This study importantly described repeated taste reward application in recovered anorexia nervosa, indicating that this application activates brain response differently compared to random application.

  49. Wagner A et al. Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology. 2008;33(3):513–23.

    Article  PubMed  Google Scholar 

  50. Vocks S et al. Effects of gustatory stimulation on brain activity during hunger and satiety in females with restricting-type anorexia nervosa: an fMRI study. J Psychiatr Res. 2011;45(3):395–403.

    Article  PubMed  Google Scholar 

  51. Bohon C, Stice E. Negative affect and neural response to palatable food intake in bulimia nervosa. Appetite. 2012;58(3):964–70.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kaye WH et al. Does a shared neurobiology for foods and drugs of abuse contribute to extremes of food ingestion in anorexia and bulimia nervosa? Biol Psychiatry. 2013;73(9):836–42. This study is an important review on overlapping brain mechanisms in substance use and eating disorders.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36(2):241–63.

    Article  CAS  PubMed  Google Scholar 

  54. Kaye WH et al. Abnormalities in CNS monoamine metabolism in anorexia nervosa. Arch Gen Psychiatry. 1984;41(4):350–5.

    Article  CAS  PubMed  Google Scholar 

  55. Barbato G et al. Increased dopaminergic activity in restricting-type anorexia nervosa. Psychiatry Res. 2006;142(2–3):253–5.

    Article  CAS  PubMed  Google Scholar 

  56. Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain J Neurol. 1983;106(Pt 3):643–53.

    Article  Google Scholar 

  57. Frank GK et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry. 2005;58(11):908–12.

    Article  CAS  PubMed  Google Scholar 

  58. Rescorla RA. Stimulus generalization: some predictions from a model of Pavlovian conditioning. J Exp Psychol Anim Behav Process. 1976;2(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  59. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.

    Article  CAS  PubMed  Google Scholar 

  60. D’Ardenne K et al. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science. 2008;319(5867):1264–7.

    Article  PubMed  Google Scholar 

  61. O’Doherty JP et al. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329–37.

    Article  PubMed  Google Scholar 

  62. Kelley AE et al. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–95.

    Article  CAS  PubMed  Google Scholar 

  63. Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;16(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  64. Jocham G, Klein TA, Ullsperger M. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci. 2011;31(5):1606–13.

    Article  CAS  PubMed  Google Scholar 

  65. Daw ND et al. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69(6):1204–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results Probl Cell Differ. 2010;52:69–86.

    Article  PubMed  Google Scholar 

  67. Sutton RS, Barto AG eds. Toward a modern theory of adaptive networks: expectation and prediction. MIT Press: Boston, MA; 1998.

  68. Avena NM, Rada P, Hoebel BG. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Carr K et al. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience. 2003;119:1157–67.

    Article  CAS  PubMed  Google Scholar 

  70. Carr KD. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav. 2007;91(5):459–72.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Volkow ND et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–43.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Frank GK et al. Anorexia Nervosa and Obesity are Associated with Opposite Brain Reward Response. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2012. This study for the first time contrasted brain reward response in underweight individuals with anorexia nervosa and obese individuals, supporting animal literature on effects of eating and weight change on brain dopamine circuits.

  74. Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol. 2008;75(1):266–322.

    Article  CAS  PubMed  Google Scholar 

  75. Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001;2(10):695–703.

    Article  CAS  PubMed  Google Scholar 

  76. Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26(2):165–9.

    Article  PubMed  Google Scholar 

  77. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nat Neurosci. 2005;8(11):1442–4.

    Article  CAS  PubMed  Google Scholar 

  78. Jappe LM et al. Heightened sensitivity to reward and punishment in anorexia nervosa. Int J Eat Disord. 2011;44(4):317–24.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Hansenne M, Ansseau M. Harm avoidance and serotonin. Biol Psychol. 1999;51(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  80. Harrison A et al. Emotional functioning in eating disorders: attentional bias, emotion recognition and emotion regulation. Psychol Med. 2010;1–11.

  81. Liu ZH, Shin R, Ikemoto S. Dual role of medial A10 dopamine neurons in affective encoding. Neuropsychopharmacology. 2008;33(12):3010–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Missale C et al. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189–225.

    CAS  PubMed  Google Scholar 

  83. Nair SG et al. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology. 2011;36(2):497–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Pecina M et al. DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex. 2013;49(3):877–90.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Frank GK. Advances in the diagnosis of anorexia nervosa and bulimia nervosa using brain imaging. Expert Opin Med Diagn. 2012;6(3):235–44.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci. 2006;8(3):335–44.

    PubMed Central  PubMed  Google Scholar 

  87. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–9. This article is important as it described the need to styudy psychiatric disease from a dimesnional perspective.

    Article  CAS  PubMed  Google Scholar 

  88. NIMH-RDoC-working-group, Positive Valence Systems: Workshop Proceedings, NIMH, Editor. Rockville, Maryland 2011.

  89. Fruchterman T, Reingold E. Graph drawing by force-directed placement. Software Pract Exp. 1991;21:1129–64.

    Article  Google Scholar 

  90. Borsboom D, Cramer AO. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9:91–121.

    Article  PubMed  Google Scholar 

  91. Kaye W et al. The neurobiology of anorexia nervosa: clinical implications of alterations of the function of serotonin and other neuronal systems. Int J Eat Disord Spec Issue Anorexia Nervosa. 2005;37:S15–9. Discussion S20-21.

    Article  Google Scholar 

  92. Frank GK, Kaye WH. Current status of functional imaging in eating disorders. Int J Eat Disord. 2012;45(6):723–36.

    Article  PubMed  Google Scholar 

  93. Wardenaar KJ, de Jonge P. Diagnostic heterogeneity in psychiatry: towards an empirical solution. BMC Med. 2013;11:201.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Porto LC et al. Impairment of the serotonergic control of feeding in adult female rats exposed to intra-uterine malnutrition. Br J Nutr. 2009;101(8):1255–61.

    Article  CAS  PubMed  Google Scholar 

  95. de Souza SL, Orozco-Solis R, de Castro M, et al. Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur J Neurosci. 2008;27(6):1400–8.

    Article  Google Scholar 

  96. Gearhardt AN et al. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):808–16.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Frank G. The role of neurotransmitter systems in eating and substance use disorders, in eating disorders, addictions and substance use disorders. In: Brewerton T, Baker-Dennis A, editors. Springer: Berlin; 2014.

  98. Brewerton TD, Dennis AB. Eating disorders, addictions and substance use disorders: research, clinical and treatment perspectives. xxv:681.

  99. Hyman SE. Psychiatric drug development: diagnosing a crisis. Cerebrum. 2013;2013:5.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

All procedures performed in studies from our group involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the studies from our group reported on. Funding for this work was provided by NIMH grants R01MH096777 and R01MH103436.

Compliance with Ethics Guidelines

Conflict of Interest

Guido K.W. Frank declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido K. W. Frank.

Additional information

This article is part of the Topical Collection on Eating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, G.K.W. Recent Advances in Neuroimaging to Model Eating Disorder Neurobiology. Curr Psychiatry Rep 17, 22 (2015). https://doi.org/10.1007/s11920-015-0559-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0559-z

Keywords

Navigation