Skip to main content

Advertisement

Log in

The genetics of alcoholism

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Heritability estimates for alcoholism range from 50% to 60%, pointing out the importance of genetic and environmental factors in its etiology. This review highlights recent advances in translational work investigating genetic influences on alcoholism. We focus on genetic research involving corticotropin-releasing factor, glutamatergic, and opioidergic systems. Variation in the CRF1 receptor gene has been shown to moderate stress-induced alcohol drinking (gene-environment interaction) in animals, and this finding was recently extended to humans. Also, the hyperglutamatergic state, first observed during withdrawal from chronic alcohol exposure in animal models, is associated with aversive and dysphoric states in alcoholics. Pharmacogenetic studies of naltrexone efficacy are in the clinical stages, and recent studies confirmed a differential response dependent on the μ-opioid receptor genotype. Such advances will be essential for the effective treatment of alcoholism in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Dick DM, Bierut LJ: The genetics of alcohol dependence. Curr Psychiatry Rep 2006, 8:151–157.

    Article  PubMed  Google Scholar 

  2. Goldman D: Recent developments in alcoholism: genetic transmission. Recent Dev Alcohol 1993, 11:231–248.

    PubMed  CAS  Google Scholar 

  3. Rose RJ: A developmental behavior-genetic perspective on alcoholism risk. Alcohol Health Res World 1998, 22:131–143.

    PubMed  CAS  Google Scholar 

  4. Sinha R: The role of stress in addiction relapse. Curr Psychiatry Rep 2007, 9:388–395.

    Article  PubMed  Google Scholar 

  5. Bjorntorp P: Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2001, 2:73–86.

    Article  PubMed  CAS  Google Scholar 

  6. Valentino RJ, Foote SL, Page ME: The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 1993, 697:173–188.

    Article  PubMed  CAS  Google Scholar 

  7. Cummings S, Elde R, Ells J, Lindall A: Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J Neurosci 1983, 3:1355–1368.

    PubMed  CAS  Google Scholar 

  8. Curtis AL, Bello NT, Connolly KR, Valentino RJ: Corticotropin-releasing factor neurones of the central nucleus of the amygdala mediate locus coeruleus activation by cardiovascular stress. J Neuroendocrinol 2002, 14:667–682.

    Article  PubMed  CAS  Google Scholar 

  9. de Waele JP, Gianoulakis C: Effects of single and repeated exposures to ethanol on hypothalamic beta-endorphin and CRH release by the C57BL/6 and DBA/2 strains of mice. Neuroendocrinology 1993, 57:700–709.

    Article  PubMed  Google Scholar 

  10. Sarnyai Z, Shaham Y, Heinrichs SC: The role of corticotropin-releasing factor in drug addiction. Pharmacol Rev 2001, 53:209–243.

    PubMed  CAS  Google Scholar 

  11. Funk CK, O’Dell LE, Crawford EF, Koob GF: Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J Neurosci 2006, 26:11324–11332.

    Article  PubMed  CAS  Google Scholar 

  12. Merlo Pich E, Lorang M, Yeganeh M, et al.: Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 1995, 15:5439–5447.

    PubMed  CAS  Google Scholar 

  13. Zorrilla EP, Koob GF: The therapeutic potential of CRF1 antagonists for anxiety. Expert Opin Investig Drugs 2004, 13:799–828.

    Article  PubMed  CAS  Google Scholar 

  14. Clarke TK, Schumann G: Gene-environment interactions resulting in risk alcohol drinking behaviour are mediated by CRF and CRF1. Pharmacol Biochem Behav 2009, 93:230–236.

    Article  PubMed  CAS  Google Scholar 

  15. Valdez GR, Roberts AJ, Chan K, et al.: Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcohol Clin Exp Res 2002, 26:1494–1501.

    PubMed  CAS  Google Scholar 

  16. Gehlert DR, Cippitelli A, Thorsell A, et al.: 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci 2007, 27:2718–2726.

    Article  PubMed  CAS  Google Scholar 

  17. Sommer WH, Rimondini R, Hansson AC, et al.: Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 2008, 63:139–145.

    Article  PubMed  Google Scholar 

  18. Wrase J, Makris N, Braus DF, et al.: Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 2008, 165:1179–1184.

    Article  PubMed  Google Scholar 

  19. Plotsky PM: Hypophysiotropic regulation of stress-induced ACTH secretion. Adv Exp Med Biol 1988, 245:65–81.

    PubMed  CAS  Google Scholar 

  20. Rasmussen DD, Boldt BM, Bryant CA, et al.: Chronic daily ethanol and withdrawal: 1. Long-term changes in the hypothalamo-pituitary-adrenal axis. Alcohol Clin Exp Res 2000, 24:1836–1849.

    Article  PubMed  CAS  Google Scholar 

  21. Valdez GR, Koob GF: Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: implications for the development of alcoholism. Pharmacol Biochem Behav 2004, 79:671–689.

    Article  PubMed  CAS  Google Scholar 

  22. Koob GF: A role for brain stress systems in addiction. Neuron 2008, 59:11–34.

    Article  PubMed  CAS  Google Scholar 

  23. Koob GF, Le Moal M: Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci 2008, 363:3113–3123.

    Article  PubMed  Google Scholar 

  24. Heilig M, Koob GF: A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci 2007, 30:399–406.

    Article  PubMed  CAS  Google Scholar 

  25. Hansson AC, Cippitelli A, Sommer WH, et al.: Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc Natl Acad Sci U S A 2006, 103:15236–15241.

    Article  PubMed  CAS  Google Scholar 

  26. Barr CS, Dvoskin RL, Yuan Q, et al.: CRH haplotype as a factor influencing cerebrospinal fluid levels of corticotropin-releasing hormone, hypothalamic-pituitary-adrenal axis activity, temperament, and alcohol consumption in rhesus macaques. Arch Gen Psychiatry 2008, 65:934–944.

    Article  PubMed  CAS  Google Scholar 

  27. Treutlein J, Kissling C, Frank J, et al.: Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Mol Psychiatry 2006, 11:594–602.

    Article  PubMed  CAS  Google Scholar 

  28. Blomeyer D, Treutlein J, Esser G, et al.: Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol Psychiatry 2008, 63:146–151.

    Article  PubMed  CAS  Google Scholar 

  29. Lovinger DM, White G, Weight FF: Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 1989, 243:1721–1724.

    Article  PubMed  CAS  Google Scholar 

  30. Blevins T, Mirshahi T, Chandler LJ, Woodward JJ: Effects of acute and chronic ethanol exposure on heteromeric Nmethyl-D-aspartate receptors expressed in HEK 293 cells. J Neurochem 1997, 69:2345–2354.

    Article  PubMed  CAS  Google Scholar 

  31. Wirkner K, Poelchen W, Koles L, et al.: Ethanol-induced inhibition of NMDA receptor channels. Neurochem Int 1999, 35:153–162.

    Article  PubMed  CAS  Google Scholar 

  32. Vengeliene V, Bilbao A, Molander A, Spanagel R: Neuropharmacology of alcohol addiction. Br J Pharmacol 2008, 154:299–315.

    Article  PubMed  CAS  Google Scholar 

  33. De Witte P, Pinto E, Ansseau M, Verbanck P: Alcohol and withdrawal: from animal research to clinical issues. Neurosci Biobehav Rev 2003, 27:189–197.

    Article  PubMed  CAS  Google Scholar 

  34. Szumlinski KK, Toda S, Middaugh LD, et al.: Evidence for a relationship between Group 1 mGluR hypofunction and increased cocaine and ethanol sensitivity in Homer2 null mutant mice. Ann N Y Acad Sci 2003, 1003:468–471.

    Article  PubMed  Google Scholar 

  35. Szumlinski KK, Lominac KD, Oleson EB, et al.: Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 2005, 25:7054–7061.

    Article  PubMed  CAS  Google Scholar 

  36. Szumlinski KK, Ary AW, Lominac KD, et al.: Accumbens Homer2 overexpression facilitates alcohol-induced neuroplasticity in C57BL/6J mice. Neuropsychopharmacology 2008, 33:1365–1378.

    Article  PubMed  CAS  Google Scholar 

  37. Tsai G, Coyle JT: The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Annu Rev Med 1998, 49:173–184.

    Article  PubMed  CAS  Google Scholar 

  38. Ridge JP, Ho AM, Innes DJ, Dodd PR: The expression of NMDA receptor subunit mRNA in human chronic alcoholics. Ann N Y Acad Sci 2008, 1139:10–19.

    Article  PubMed  CAS  Google Scholar 

  39. Grusser SM, Wrase J, Klein S, et al.: Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 2004, 175:296–302.

    Article  CAS  Google Scholar 

  40. Lingford-Hughes AR, Daglish MR, Stevenson BJ, et al.: Imaging alcohol cue exposure in alcohol dependence using a PET 15O-H2O paradigm: results from a pilot study. Addict Biol 2006, 11:107–115.

    Article  PubMed  Google Scholar 

  41. Schumann G, Johann M, Frank J, et al.: Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch Gen Psychiatry 2008, 65:826–838.

    Article  PubMed  CAS  Google Scholar 

  42. Szumlinski KK, Ary AW, Lominac KD: Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 2008, 75:112–133.

    Article  PubMed  CAS  Google Scholar 

  43. Evanson NK, Van Hooren DC, Herman JP: GluR5-mediated glutamate signaling regulates hypothalamo-pituitary-adrenocortical stress responses at the paraventricular nucleus and median eminence. Psychoneuroendocrinology 2009 May 16 (Epub ahead of print).

  44. Goeders NE, Lane JD, Smith JE: Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 1984, 20:451–455.

    Article  PubMed  CAS  Google Scholar 

  45. Olive MF, Mehmert KK, Messing RO, Hodge CW: Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol in PKCepsilon-deficient mice. Eur J Neurosci 2000, 12:4131–4140.

    Article  PubMed  CAS  Google Scholar 

  46. Swift RM, Whelihan W, Kuznetsov O, et al.: Naltrexone-induced alterations in human ethanol intoxication. Am J Psychiatry 1994, 151:1463–1467.

    PubMed  CAS  Google Scholar 

  47. Jung YC, Namkoong K: Pharmacotherapy for alcohol dependence: anticraving medications for relapse prevention. Yonsei Med J 2006, 47:167–178.

    Article  PubMed  CAS  Google Scholar 

  48. Oslin DW, Berrettini WH, O’Brien CP: Targeting treatments for alcohol dependence: the pharmacogenetics of naltrexone. Addict Biol 2006, 11:397–403.

    Article  PubMed  CAS  Google Scholar 

  49. Pettinati HM, O’Brien CP, Rabinowitz AR, et al.: The status of naltrexone in the treatment of alcohol dependence: specific effects on heavy drinking. J Clin Psychopharmacol 2006, 26:610–625.

    Article  PubMed  CAS  Google Scholar 

  50. Bond C, LaForge KS, Tian M, et al.: Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 1998, 95:9608–9613.

    Article  PubMed  CAS  Google Scholar 

  51. Ray LA, Hutchison KE: A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol Clin Exp Res 2004, 28:1789–1795.

    Article  PubMed  CAS  Google Scholar 

  52. Ray LA, Hutchison KE: Effects of naltrexone on alcohol sensitivity and genetic moderators of medication response: a double-blind placebo-controlled study. Arch Gen Psychiatry 2007, 64:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  53. Pettinati HM, Weiss RD, Dundon W, et al.: A structured approach to medical management: a psychosocial intervention to support pharmacotherapy in the treatment of alcohol dependence. J Stud Alcohol Suppl 2005, Jul:170–178.

    Google Scholar 

  54. Anton RF, Oroszi G, O’Malley S, et al.: An evaluation of mu-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch Gen Psychiatry 2008, 65:135–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Schumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacey, D., Clarke, TK. & Schumann, G. The genetics of alcoholism. Curr Psychiatry Rep 11, 364–369 (2009). https://doi.org/10.1007/s11920-009-0055-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-009-0055-4

Keywords

Navigation