Skip to main content

Advertisement

Log in

Expanding treatment of tobacco dependence

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Nicotine dependence is the leading preventable cause of adult morbidity and mortality in the world. New research on the treatment of this disorder ranges from studies evaluating access to treatment to studies elucidating the molecular mechanisms of nicotine addiction. As our understanding of the neurobiology of tobacco addiction grows, the number of potential therapeutic targets by which we can intervene in this pernicious disorder also increases. This paper presents an overview of recent research trends in the treatment of tobacco dependence. We review several novel mechanisms of action that may serve as therapeutic targets for the pharmacologic treatment of tobacco dependence, including drugs that affect monamine oxidase, selective nicotinic receptors, glutamate and γ-aminobutyric acid receptors, and the endocannabinoid system. For each of these therapeutic targets, we discuss medications in development that affect these pathophysiologic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. World Health Organization: The World Health Report 2002: Reducing risks, promoting healthy life. Geneva: World Health Organization; 2002:1–94.

    Google Scholar 

  2. Jarvik ME, Schneider NG: Nicotine. In Substance Abuse: A Comprehensive Textbook, Second Edition. Edited by Lowinson JH, Ruiz P, Millman RB. Baltimore: Lippincott, Williams & Wilkins; 1992.

    Google Scholar 

  3. Fiore MC, Bailey WC, Cohen SJ, et al.: Clinical Practice Guideline. Treating Tobacco Use and Dependence. Rockville, MD: US Department of Health and Human Services; 2000. Written by a panel of leading experts, this clinical practice guideline used meta-analytic strategies to summarize the state of science as of 1999, and make treatment recommendations based on these analyses.

    Google Scholar 

  4. Gorin SS, Heck JE: Meta-analysis of the efficacy of tobacco counseling by health care providers. Cancer Epidemiol Biomarkers Prev 2004, 13:2012–2022.

    PubMed  CAS  Google Scholar 

  5. Roche AM, Freeman T: Brief interventions: good in theory but weak in practice. Drug Alcohol Rev 2004, 23:11–18. This is a provocative review that explores reasons why brief interventions for tobacco dependence have failed to achieve optimum resultsin front-line clinical practice.

    Article  PubMed  Google Scholar 

  6. Tait RJ, Hulse GK: A systematic review of the effectiveness of brief interventions with substance using adolescents by type of drug. Drug Alcohol Rev 2003, 22:337–346.

    Article  PubMed  Google Scholar 

  7. Balfour DJ: The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus. Nicotine Tob Res 2004, 6:899–912.

    Article  PubMed  CAS  Google Scholar 

  8. Shiffman S, Waters AJ: Negative affect and smoking lapses: a prospective analysis. J Consult Clin Psychol 2004, 72:192–201.

    Article  PubMed  Google Scholar 

  9. Dani JA: Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatry 2001, 49:166–174.

    Article  PubMed  CAS  Google Scholar 

  10. Pontieri FE, Tanda G, Orzi F, et al.: Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996, 382:255–257.

    Article  PubMed  CAS  Google Scholar 

  11. Fagen ZM, Mansvelder HD, Keath JR, et al.: Short- and longterm modulation of synaptic inputs to brain reward areas by nicotine. Ann N Y Acad Sci 2003, 1003:185–195.

    Article  PubMed  CAS  Google Scholar 

  12. Kelley AE: Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 2004, 44:161–179.

    Article  PubMed  CAS  Google Scholar 

  13. George TP, O’Malley SS: Current pharmacological treatments for nicotine dependence. Trends Pharmacol Sci 2004, 25:42–48.

    Article  PubMed  CAS  Google Scholar 

  14. Hutchison KE, Rutter MC, Niaura R, et al.: Olanzapine attenuates cue-elicited craving for tobacco. Psychopharmacology (Berl) 2004, 175:407–413.

    CAS  Google Scholar 

  15. Mahler SV, de Wit H: Effects of haloperidol on reactions to smoking cues in humans. Behav Pharmacol 2005, 16:123–126.

    Article  PubMed  CAS  Google Scholar 

  16. Brauer LH, Cramblett MJ, Paxton DA, et al.: Haloperidol reduces smoking of both nicotine-containing and denicotinized cigarettes. Psychopharmacology (Berl) 2001, 159:31–37.

    Article  CAS  Google Scholar 

  17. Caskey NH, Jarvik ME, Wirshing WC, et al.: Modulating tobacco smoking rates by dopaminergic stimulation and blockade. Nicotine Tob Res 2002, 4:259–266.

    Article  PubMed  CAS  Google Scholar 

  18. Hughes J, Stead L, Lancaster T: Antidepressants for smoking cessation. Cochrane Database Syst Rev 2004; CD000031.

  19. Gourlay SG, Stead LF, Benowitz NL: Clonidine for smoking cessation. Cochrane Database Syst Rev 2004; CD000058.

  20. Berlin I, Anthenelli RM: Monoamine oxidases and tobacco smoking. Intl J Neuropsychopharmacol 2001, 4:33–42. This is an historical overview of the pharmacology and clinical relevance of the inibitory effects of tobacco smoke on MAO.

    Article  CAS  Google Scholar 

  21. Berlin I, Said S, Spreux-Varoquaux O, et al.: A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther 1995, 58:444–452.

    Article  PubMed  CAS  Google Scholar 

  22. Fowler JS, Logan J, Wang GJ, et al.: Low monoamine oxidase B in peripheral organs in smokers. Proc Natl Acad Sci U S A 2003, 100:11600–11605.

    Article  PubMed  CAS  Google Scholar 

  23. Anthenelli RM: Recent advances in the treatment of tobacco dependence. Clin Neurosci Res 2005, In press.

  24. Watkins SS, Koob GF, Markou A: Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob Res 2000, 2:19–37.

    Article  PubMed  CAS  Google Scholar 

  25. Rose JE, Behm FM, Ramsey C, et al.: Platelet monoamine oxidase, smoking cessation, and tobacco withdrawal symptoms. Nicotine Tob Res 2001, 3:383–390.

    Article  PubMed  CAS  Google Scholar 

  26. Anthenelli RM, Tipp J, Li TK, et al.: Platelet monoamine oxidase activity in subgroups of alcoholics and controls: results from the Collaborative Study on the Genetics of Alcoholism. Alcohol Clin Exp Res 1998, 22:598–604.

    Article  PubMed  CAS  Google Scholar 

  27. Houtsmuller EJ, Thornton JA, Stitzer ML: Effects of selegiline (L-deprenyl) during smoking and short-term abstinence. Psychopharmacology (Berl) 2002, 163:213–220.

    Article  CAS  Google Scholar 

  28. George TP, Vessicchio JC, Termine A, et al.: A preliminary placebo-controlled trial of selegiline hydrochloride for smoking cessation. Biol Psychiatry 2003, 53:136–143.

    Article  PubMed  CAS  Google Scholar 

  29. Biberman R, Neumann R, Katzir I, et al.: A randomized controlled trial of oral selegiline plus nicotine skin patch compared with placebo plus nicotine skin patch for smoking cessation. Addiction 2003, 98:1403–1407.

    Article  PubMed  CAS  Google Scholar 

  30. Mahmood I: Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin Pharmacokinet 1997, 33:91–102.

    PubMed  CAS  Google Scholar 

  31. Barrett JS, DiSanto AR, Thomford PJ, et al.: Toxicokinetic evaluation of a selegiline transdermal system in the dog. Biopharm Drug Dispos 1997, 18:165–184.

    Article  PubMed  CAS  Google Scholar 

  32. Barrett JS, Szego P, Rohatagi S, et al.: Absorption and presystemic metabolism of selegiline hydrochloride at different regions in the gastrointestinal tract in healthy males. Pharm Res 1996, 13:1535–1540.

    Article  PubMed  CAS  Google Scholar 

  33. Mansvelder HD, De Rover M, McGehee DS, et al.: Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol 2003, 480:117–123.

    Article  PubMed  CAS  Google Scholar 

  34. Dani JA, De Biasi M: Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 2001, 70:439–446.

    Article  PubMed  CAS  Google Scholar 

  35. Silagy C, Lancaster T, Stead L, et al.: Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2004; CD000146.

  36. Foulds J, Burke M, Steinberg M, et al.: Advances in pharmacotherapy for tobacco dependence. Expert Opin Emerg Drugs 2004, 9:39–53.

    Article  PubMed  CAS  Google Scholar 

  37. Slemmer JE, Martin BR, Damaj MI: Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 2000, 295:321–327.

    PubMed  CAS  Google Scholar 

  38. Rose JE, Behm FM: Extinguishing the rewarding value of smoke cues: pharmacological and behavioral treatments. Nicotine Tob Res 2004, 6:523–532. This is a good example of a laboratory-based clinical trial evaluating the ways that pharmacologic and behavioral manipulations influence cues to smoke.

    Article  PubMed  Google Scholar 

  39. Lundahl LH, Henningfield JE, Lukas SE: Mecamylamine blockade of both positive and negative effects of IV nicotine in human volunteers. Pharmacol Biochem Behav 2000, 66:637–643.

    Article  PubMed  CAS  Google Scholar 

  40. Eissenberg T, Griffiths RR, Stitzer ML: Mecamylamine does not precipitate withdrawal in cigarette smokers. Psychopharmacology 1996, 127:328–336.

    Article  PubMed  CAS  Google Scholar 

  41. Rose JE, Behm FM, Westman EC, et al.: Mecamylamine acutely increases human intravenous nicotine self-administration. Pharmacol Biochem Behav 2003, 76:307–313.

    Article  PubMed  CAS  Google Scholar 

  42. Pomerleau CS, Pomerleau OF, Majchrzak MJ: Mecamylamine pretreatment increases subsequent nicotine self-administration as indicated by changes in plasma nicotine level. Psychopharmacology (Berl) 1987, 91:391–393.

    Article  CAS  Google Scholar 

  43. Nemeth-Coslett R, Henningfield JE, O’Keeffe MK, et al.: Effects of mecamylamine on human cigarette smoking and subjective ratings. Psychopharmacology (Berl) 1986, 88:420–425.

    CAS  Google Scholar 

  44. Newhouse PA, Potter A, Corwin J, et al.: Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology (Berl) 1992, 108:480–484.

    Article  CAS  Google Scholar 

  45. Rose JE, Behm FM, Westman EC, et al.: Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther 1994, 56:86–99.

    Article  PubMed  CAS  Google Scholar 

  46. Tapper AR, McKinney SL, Nashmi R, et al.: Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 2004, 306:1029–1032.

    Article  PubMed  CAS  Google Scholar 

  47. Picciotto MR, Zoli M, Rimondini R, et al.: Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998, 391:173–177.

    Article  PubMed  CAS  Google Scholar 

  48. Coe JW, Brooks PR, Vetelino MG, et al.: Varenicline (CP-526, 555): A novel, potent, and selective nicotinic receptor partial agonist for the treatment of smoking cessation: Rationale, discovery, and mode of action. Poster presented at the SRNT meeting in Prague, March 21, 2005.

  49. Oncken C, Watsky E, Reeves K, et al.: Smoking cessation with varenicline, a selective nicotinic receptor partial agonist: Results from a Phase 2 study. Poster presented at the SRNT meeting in Prague, March 21, 2005.

  50. Cohen C, Bergis OE, Galli F, et al.: SSR591813, a novel selective and partial alpha4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation. J Pharmacol Exp Ther 2003, 306:407–420.

    Article  PubMed  CAS  Google Scholar 

  51. Paterson NE, Froestl W, Markou A: Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 2005, 30:119–128.

    Article  PubMed  CAS  Google Scholar 

  52. Dewey SL, Brodie JD, Gerasimov M, et al.: A pharmacologic strategy for the treatment of nicotine addiction. Synapse 1999, 31:76–86.

    Article  PubMed  CAS  Google Scholar 

  53. Brodie JD, Figueroa E, Laska EM, et al.: Safety and efficacy of gamma-vinyl GABA (GVG) for the treatment of methamphetamine and/or cocaine addiction. Synapse 2005, 55:122–125.

    Article  PubMed  CAS  Google Scholar 

  54. Schiffer WK, Gerasimov MR, Marsteller DA, et al.: Topiramate selectively attenuates nicotine-induced increases in monoamine release. Synapse 2001, 42:196–198.

    Article  PubMed  CAS  Google Scholar 

  55. Skradski S, White HS: Topiramate blocks kainate-evoked cobalt influx into cultured neurons. Epilepsia 2000, 41(Suppl 1):S45-S47.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson BA: Topiramate-induced neuromodulation of cortico-mesolimbic dopamine function: a new vista for the treatment of comorbid alcohol and nicotine dependence? Addict Behav 2004, 29:1465–1479.

    Article  PubMed  Google Scholar 

  57. Rose JE, Brauer LH, Behm FM, et al.: Psychopharmacological interactions between nicotine and ethanol. Nicotine Tob Res 2004, 6:133–144.

    Article  PubMed  CAS  Google Scholar 

  58. Diana MA, Marty A: Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 2004, 142:9–19.

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalez S, Cascio MG, Fernandez-Ruiz J, et al.: Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res 2002, 954:73–81.

    Article  PubMed  CAS  Google Scholar 

  60. Balerio GN, Aso E, Berrendero F, et al.: Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. Eur J Neurosci 2004, 20:2737–2748.

    Article  PubMed  Google Scholar 

  61. Cohen C, Perrault G, Griebel G, et al.: Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB(1)) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 2005, 30:145–155.

    Article  PubMed  CAS  Google Scholar 

  62. Cohen C, Perrault G, Voltz C, et al.: SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 2002, 13:451–463. This is the first study done in experimental animals that showed that inhibition of the endocannibinoid system dampens nicotine reinforcement.

    PubMed  CAS  Google Scholar 

  63. Cota D, Marsicano G, Tschop M, et al.: The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003, 112:423–431.

    Article  PubMed  CAS  Google Scholar 

  64. Ravinet TC, Arnone M, Delgorge C, et al.: Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 2003, 284:R345-R353.

    Google Scholar 

  65. Dale LC, Anthenelli RM: Rimonabant as an aid to smoking cessation in smokers motivated to quit: results from a U.S. multicenter study - STRATUS US Trial. Paper presented at the Annual Meeting of the American College of Cardiology, New Orleans, LA, 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, D.S., Anthenelli, R.M. Expanding treatment of tobacco dependence. Curr Psychiatry Rep 7, 344–351 (2005). https://doi.org/10.1007/s11920-005-0034-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-005-0034-3

Keywords

Navigation