Skip to main content
Log in

The genes for schizophrenia: Finally a breakthrough?

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

A number of susceptibility genes for schizophrenia have recently been identified. They have engendered excitement because replicate studies have attained greater consistency than in the past. In this review, we outline gene mapping methods, and briefly review their strengths and challenges. We also evaluate peer-reviewed genetic association studies that have implicated six selected genes: catechol-O-methyl transferase (COMT), neuregulin 1 (NRG1), dysbindin (DTNBP1), regulator of G-protein signaling 4 (RGS4), and G72 and D-amino-acid oxidase (DAAO). The available supporting evidence is variable. Though credible evidence is available for all of these genes, it is strongest for NRG1 and DTNBP1. Further studies, particularly exhaustive analyses of all polymorphisms at each locus, meta-analyses, and investigations of the likely function of risk alleles (variants) are desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gottesman I: Schizophrenia Genesis: The Origins of Madness. New York: WH Freeman; 1991.

    Google Scholar 

  2. McGue M, Gottesman II, Rao DC: The transmission of schizophrenia under a multifactorial threshold model. Am J Hum Genet 1983, 35:1161–1178.

    PubMed  CAS  Google Scholar 

  3. Risch NJ: Searching for genetic determinants in the new millennium. Nature 2000, 405:847–856.

    Article  PubMed  CAS  Google Scholar 

  4. Murray RM, Jones PB, Susser E, et al.: The Epidemiology of Schizophrenia, edn 1. Cambridge, UK: Cambridge University Press; 2003:454.

    Google Scholar 

  5. Moldin SO: The maddening hunt for madness genes. Nat Genet 1997, 17:127–129.

    Article  PubMed  CAS  Google Scholar 

  6. Owen MJ, Cardno AG, O’Donovan MC: Psychiatric genetics: back to the future. Mol Psychiatry 2000, 5:22–31.

    Article  PubMed  CAS  Google Scholar 

  7. National Institute of Mental Health Center for Collaborative Genetic Studies on Mental Disorders. http://zork.wustl.edu/ nimh/. Accessed April 15, 2004.

  8. Lewis CM, Levinson DF, Wise LH, et al.: Genome scan metaanalysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003, 73:34–48.

    Article  PubMed  CAS  Google Scholar 

  9. Badner JA, Gershon ES: Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002, 7:405–411.

    Article  PubMed  CAS  Google Scholar 

  10. O’Donovan MC, Owen MJ: Candidate gene-association studies of schizophrenia. Am J Hum Genet 1999, 65:587–592. This article is a cogent defense of candidate gene studies.

    Article  PubMed  CAS  Google Scholar 

  11. Nimgaonkar V: In defense of genetic association studies. Mol Psychiatry 1997, 2:275–277.

    Article  PubMed  CAS  Google Scholar 

  12. Database for schizophrenia candidate genes focusing on variations(VSD). http://www.chgb.org.cn/vsd.htm. Accessed April 12, 2004.

  13. Weiss KM, Terwilliger JD: How many diseases does it take to map a gene with SNPs? Nat Genet 2000, 26:151–157.

    Article  PubMed  CAS  Google Scholar 

  14. Baron M: Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 2001, 68:299–312.

    Article  PubMed  CAS  Google Scholar 

  15. Falk CT, Rubinstein P: Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet 1987, 51:227–233.

    PubMed  CAS  Google Scholar 

  16. Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: the insulin gene region and insulindependent diabetes mellitus (IDDM). Am J Hum Genet 1993, 52:506–516.

    PubMed  CAS  Google Scholar 

  17. Lander ES, Schork NJ: Genetic dissection of complex traits [published erratum appears in Science 1994 266:353]. Science 1994, 265:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  18. Bacanu SA, Devlin B, Roeder K: The power of genomic control. Am J Hum Genet 2000, 66:1933–1944.

    Article  PubMed  CAS  Google Scholar 

  19. Pritchard JK, Rosenberg NA: Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999, 65:220–228.

    Article  PubMed  CAS  Google Scholar 

  20. Spielman RS, Ewens WJ: The TDT and other family-based tests for linkage disequilibrium and association [editorial]. Am J Hum Genet 1996, 59:983–989.

    PubMed  CAS  Google Scholar 

  21. Sinsheimer JS, McKenzie CA, Keavney B, Lange K: SNPs and snails and puppy dogs’ tails: analysis of SNP haplotype data using the gamete competition model. Ann Hum Genet 2001, 65:483–490.

    Article  PubMed  CAS  Google Scholar 

  22. Jorde LB: Linkage disequilibrium and the search for complex disease genes. Genome Res 2000, 10:1435–1444.

    Article  PubMed  CAS  Google Scholar 

  23. Harrison PJ, Owen MJ: Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003, 361:417–419.

    Article  PubMed  CAS  Google Scholar 

  24. Moghaddam B: Bringing order to the glutamate chaos in schizophrenia. Neuron 2003, 40:881–884. A brief review of genes in the glutamate pathway implicated in schizophrenia by recent gene mapping studies.

    Article  PubMed  CAS  Google Scholar 

  25. Owen MJ, Williams NM, O’Donovan MC: The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004, 9:14–27. A good general overview of schizophrenia genetics.

    Article  PubMed  CAS  Google Scholar 

  26. Karayiorgou M, Morris MA, Morrow B, et al.: Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A 1995, 92:7612–7616.

    Article  PubMed  CAS  Google Scholar 

  27. Lohmueller KE, Pearce CL, Pike M, et al.: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003, 33:177–182.

    Article  PubMed  CAS  Google Scholar 

  28. Glatt SJ, Faraone SV, Tsuang MT: Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and familybased studies. Am J Psychiatry 2003, 160:469–476.

    Article  PubMed  Google Scholar 

  29. Egan MF, Goldberg TE, Kolachana BS, et al.: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98:6917–6922.

    Article  PubMed  CAS  Google Scholar 

  30. Li T, Ball D, Zhao J, et al.: Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 2000, 5:77–84.

    Article  PubMed  CAS  Google Scholar 

  31. Shifman S, Bronstein M, Sternfeld M, et al.: A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002, 71:1296–1302.

    Article  PubMed  CAS  Google Scholar 

  32. Cannella B, Hoban CJ, Gao YL, et al.: The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci U S A 1998, 95:10100–10105.

    Article  PubMed  CAS  Google Scholar 

  33. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al.: Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002, 71:877–892. An example of dogged pursuit in a positional cloning effort using a unique data set.

    Article  PubMed  Google Scholar 

  34. Stefansson H, Sarginson J, Kong A, et al.: Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003, 72:83–87.

    Article  PubMed  CAS  Google Scholar 

  35. Williams NM, Preece A, Spurlock G, et al.: Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003, 8:485–487.

    Article  PubMed  CAS  Google Scholar 

  36. Corvin AP, Morris DW, McGhee K, et al.: Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry 2004, 9:208–213.

    Article  PubMed  CAS  Google Scholar 

  37. Yang JZ, Si TM, Ruan Y, et al.: Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 2003, 8:706–709.

    Article  PubMed  CAS  Google Scholar 

  38. Iwata N, Suzuki T, Ikeda M, et al.: No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol Psychiatry 2004, 9:126–127.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao X, Shi Y, Tang J, et al.: A case control and family based association study of the neuregulin1 gene and schizophrenia. J Med Genet 2004, 41:31–34.

    Article  PubMed  CAS  Google Scholar 

  40. Tang JX, Chen WY, He G, et al.: Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 2004, 9:11–12.

    Article  PubMed  CAS  Google Scholar 

  41. Li T, Stefansson H, Gudfinnsson E, et al.: Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 2004, 9:9.

    Google Scholar 

  42. Benson MA, Newey SE, Martin-Rendon E, et al.: Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 2001, 276:24232–24241.

    Article  PubMed  CAS  Google Scholar 

  43. Straub RE, Jiang Y, MacLean CJ, et al.: Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002, 71:337–348. A good example of a classical positional cloning effort.

    Article  PubMed  CAS  Google Scholar 

  44. Schwab SG, Knapp M, Mondabon S, et al.: Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003, 72:185–190.

    Article  PubMed  CAS  Google Scholar 

  45. van den Oord EJ, Sullivan PF, Jiang Y, et al.: Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry 2003, 8:499–510.

    Article  PubMed  Google Scholar 

  46. Tang JX, Zhou J, Fan JB, et al.: Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003, 8:1008.

    Article  CAS  Google Scholar 

  47. Morris DW, McGhee KA, Schwaiger S, et al.: No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophr Res 2003, 60:167–172.

    Article  PubMed  Google Scholar 

  48. Williams N, Williams H, Norton N, et al.: Replication of Schizophrenia Susceptibility Loci. Am J Med Genet 2003, 112B:16–17.

    Google Scholar 

  49. Van Den Bogaert A, Schumacher J, Schulze TG, et al.: The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 2003, 73:1438–1443.

    Article  Google Scholar 

  50. van Os J, McGuffin P: Can the social environment cause schizophrenia? Br J Psychiatry 2003, 182:291–292.

    Article  PubMed  Google Scholar 

  51. Williams NM, Preece A, Morris DW, et al.: Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004, 61:336–344. An example of a comprehensive analysis of all the polymorphisms in a single gene using pooled case and control DNA.

    Article  PubMed  CAS  Google Scholar 

  52. Mirnics K, Middleton FA, Stanwood GD, et al.: Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001, 6:293–301.

    Article  PubMed  CAS  Google Scholar 

  53. Chowdari KV, Mirnics K, Semwal P, et al.: Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002, 11:1373–1380. Example of a study that used a combination of microarray analysis, followed by comprehensive association analysis.

    Article  PubMed  CAS  Google Scholar 

  54. Morris DW, Rodgers A, McGhee KA, et al.: Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet 2004, 125B:50–53.

    Article  Google Scholar 

  55. Williams NM, Preece A, Spurlock G, et al.: Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 2004, 55:192–195.

    Article  PubMed  CAS  Google Scholar 

  56. Chumakov I, Blumenfeld M, Guerassimenko O, et al.: Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 2002, 99:13675–13680.

    Article  PubMed  CAS  Google Scholar 

  57. Schumacher J, Jamra RA, Freudenberg J, et al.: Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004, 9:203–207.

    Article  PubMed  CAS  Google Scholar 

  58. Hattori M, Kunugi H, Akahane A, et al.: Novel polymorphisms in the promoter region of the neurotrophin-3 gene and their associations with schizophrenia. Am J Med Genet 2002, 114:304–309.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirts, B.H., Nimgaonkar, V. The genes for schizophrenia: Finally a breakthrough?. Curr Psychiatry Rep 6, 303–312 (2004). https://doi.org/10.1007/s11920-004-0081-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-004-0081-1

Keywords

Navigation