Skip to main content
Log in

Cognition in mania and depression: Psychological models and clinical implications

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Affective disorders, including bipolar disorder and major depressive disorder, are highly prevalent throughout the world and are extremely disabling. Diagnostic and Statistical Manual criteria and psychological models strongly implicate cognitive dysfunctions as being integral to our understanding of these disorders. We review the findings from studies that have used neurocognitive tests and functional imaging techniques to explore abnormal cognition in affective disorders. In particular, we highlight the evidence for cognitive dysfunctions that persist into full clinical remission, and the recent trend toward the use of “hot” processing tasks, involving emotionally charged stimuli, as a means of differentiating between the cognitive underpinnings of mania and depression. The clinical relevance of these developments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mental Health: New Understanding, New Hope: World Health Organization; 2001. http://www.who.int.whr/2001/en.

    Google Scholar 

  2. Greenberg PE, Kessler RC, Birnbaum, et al.: The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry 2003, 64:1465–1475.

    Article  PubMed  Google Scholar 

  3. Thomas CM, Morris S: Cost of depression among adults in England in 2000. Br J Psychiatry 2003, 183:514–519.

    Article  PubMed  Google Scholar 

  4. Diagnostic and Statistical Manual of Mental Disorders IV (DSMIV). American Psychiatric Association; 1994.

  5. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB: Sex and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and recurrence. J Affect Disord 1993, 29:85–96.

    Article  PubMed  CAS  Google Scholar 

  6. Chakravarti A, Little P: Nature, nurture and human disease. Nature 2003, 421:412–414.

    Article  PubMed  CAS  Google Scholar 

  7. Kraemer HC, Stice E, Kazdin A, et al.: How do risk factors work together? Mediators, moderators, and independent, overlapping, and proxy risk factors. Am J Psychiatry 2001, 158:848–856.

    PubMed  CAS  Google Scholar 

  8. Klose M, Jacobi F: Can gender differences in the prevalence of mental disorders be explained by sociodemographic factors? Arch Women Ment Health 2004, 7:133–148.

    Article  CAS  Google Scholar 

  9. Nolen-Hoeksema S, Larson J, Grayson C: Explaining the gender difference in depressive symptoms. J Pers Soc Psychol 1999, 77:1061–1072.

    Article  PubMed  CAS  Google Scholar 

  10. Leibenluft E: Why are so many women depressed? Scientific American 2002; Special electronic edition retrievable via www.sciam.com.

  11. Seligman ME: Learned helplessness. Annu Rev Med 1972, 23:407–412.

    Article  PubMed  CAS  Google Scholar 

  12. Abramson LY, Metalsky GI, Alloy LB: Hopelessness depression: A theory-based subtype of depression. Psychol Rev 1989, 96:358–372.

    Article  Google Scholar 

  13. Beck AT, Rush AJ, Shaw BF, Emery G: Cognitive Therapy of Depression: New York: The Guilford Press; 1979.

    Google Scholar 

  14. Beck AT: The past and future of cognitive therapy. J Psychother Pract Res 1997, 6:276–284.

    PubMed  CAS  Google Scholar 

  15. Parker G, Roy K, Eyers K: Cognitive behavior therapy for depression? Choose horses for courses. Am J Psychiatry 2003, 160:825–834.

    Article  PubMed  Google Scholar 

  16. Jarrett RB, Rush AJ: Short-term psychotherapy of depressive disorders: current status and future directions. Psychiatry 1994, 57(2):115–132.

    PubMed  CAS  Google Scholar 

  17. Breslow R, Kocsis J, Belkin B: Memory deficits in depression: evidence utilizing the Wechsler Memory Scale. Percept Mot Skills 1980, 51:541–542.

    PubMed  CAS  Google Scholar 

  18. Niederehe G, Camp CJ: Signal detection analysis of recognition memory in depressed elderly. Exp Aging Res 1985, 11:207–213.

    PubMed  CAS  Google Scholar 

  19. Calev A, Korin Y, Shapira B, et al.: Verbal and non-verbal recall by depressed and euthymic affective patients. Psychol Med 1986, 16:789–794.

    PubMed  CAS  Google Scholar 

  20. Wolfe J, Granholm E, Butters N, et al.: Verbal memory deficits associated with major affective disorders: a comparison of unipolar and bipolar patients. J Affect Disord 1987, 13:83–92.

    Article  PubMed  CAS  Google Scholar 

  21. Berg E: A simple objective technique for measuring flexibility in thinking. J Gen Psychology 1948, 39:15–22.

    Article  CAS  Google Scholar 

  22. Martin DJ, Oren Z, Boone K: Major depressives’ and dysthmics’ performance on the Wisconsin Card Sorting Test. J Clin Psychol 1991, 47:684–690.

    Article  PubMed  CAS  Google Scholar 

  23. Channon S: Executive dysfunction in depression: the Wisconsin Card Sorting Test. J Affect Disord 1996, 39:107–114.

    Article  PubMed  CAS  Google Scholar 

  24. Merriam EP, Thase ME, Haas GL, et al.: Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. Am J Psychiatry 1999, 156:780–782.

    PubMed  CAS  Google Scholar 

  25. Kupfer DJ: Research in affective disorders comes of age. Am J Psychiatry 1999, 156:165–167. This study is an overview of the limitations of current psychotherapeutic treatment in affective disorders.

    PubMed  CAS  Google Scholar 

  26. www.camcog.com. Cambridge Neuropsychological Test Automated Battery (CANTAB). In: Cambridge Cognition.

  27. Goldberg TE, Gold JM, Greenberg R, et al.: Contrasts between patients with affective disorders and patients with schizophrenia on a neuropsychological test battery. Am J Psychiatry 1993, 150:1355–1362.

    PubMed  CAS  Google Scholar 

  28. Murphy FC, Sahakian BJ, Rubinsztein JS, et al.: Emotional bias and inhibitory control processes in mania and depression. Psychol Med 1999, 29:1307–1321. Dissociable components of inhibitory control processes are identified in mania and depression using an affective shifting task, consistent with ventromedial prefrontal cortical involvement in mood-cognition relationships.

    Article  PubMed  CAS  Google Scholar 

  29. Murphy FC, Rubinstein JS, Michael A, et al.: Decision-making cognition in mania and depression. Psychol Med 2001, 31:679–693.

    Article  PubMed  CAS  Google Scholar 

  30. Sweeney JA, Kmiec JA, Kupfer DJ: Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biol Psychiatry 2000, 48:674–684.

    Article  PubMed  CAS  Google Scholar 

  31. Elliott R, Sahakian BJ, McKay AP, et al.: Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance. Psychol Med 1996, 26:975–989.

    PubMed  CAS  Google Scholar 

  32. Purcell R, Maruff P, Kyrios M, Pantelis C: Neuropsychological function in young patients with unipolar major depression. Psychol Med 1997, 27:1277–1285.

    Article  PubMed  CAS  Google Scholar 

  33. Murphy FC, Michael A, Robbins TW, Sahakian BJ: Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med 2003, 33:455–467.

    Article  PubMed  CAS  Google Scholar 

  34. Tavares JV, Drevets WC, Sahakian BJ: Cognition in mania and depression. Psychol Med 2003, 33:959–967. This is a comprehensive editorial examining the cognitive deficits across different areas of cognition of affective disorders.

    Article  PubMed  Google Scholar 

  35. Drevets WC: Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 2000, 126:413–431.

    PubMed  CAS  Google Scholar 

  36. Drevets WC: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001, 11:240–249. This is a review of the neuroimaging evidence for neural dysfunctions in mood disorders, implicating basal ganglia-thalamocortical loop structures.

    Article  PubMed  CAS  Google Scholar 

  37. Drevets WC: Prefrontal cortical-amygdalar metabolism in major depression. Ann N Y Acad Sci 1999, 877:614–637.

    Article  PubMed  CAS  Google Scholar 

  38. Drevets WC, Ongur D, Price JL: Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 1998, 3:220–226, 190–191.

    Article  PubMed  CAS  Google Scholar 

  39. Drevets WC, Price JL, Bardgett ME, et al.: Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 2002, 71:431–447.

    Article  PubMed  CAS  Google Scholar 

  40. Mayberg HS: Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 2003, 13:805–815. This paper reviews functional imaging studies in affective disorders, toward the development of more optimal treatment algorithms based on the functional findings in particular patients.

    Article  PubMed  Google Scholar 

  41. Strakowski SM, DelBello MP, Adler C, et al.: Neuroimaging in bipolar disorder. Bipolar Disord 2000, 2:148–164.

    Article  PubMed  CAS  Google Scholar 

  42. Blumberg HP, Charney DS, Krystal JH: Frontotemporal neural systems in bipolar disorder. Semin Clin Neuropsychiatry 2002, 7:243–254.

    Article  PubMed  Google Scholar 

  43. Blumberg HP, Stern E, Martinez D, et al.: Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 2000, 48:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  44. Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986, 9:357–381.

    Article  PubMed  CAS  Google Scholar 

  45. Seminowicz DA, Mayberg HS, McIntosh AR, et al.: Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 2004, 22:409–418.

    Article  PubMed  CAS  Google Scholar 

  46. Goldapple K, Segal Z, Garson C, et al.: Modulation of corticallimbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 2004, 61:34–41.

    Article  PubMed  Google Scholar 

  47. Hibbard MR, Bogdany J, Uysal S, et al.: Axis II psychopathology in individuals with traumatic brain injury. Brain Inj 2000, 14:45–61.

    Article  PubMed  CAS  Google Scholar 

  48. Whyte EM, Mulsant BH, Vanderbilt J, et al.: Depression after stroke: a prospective epidemiological study. J Am Geriatr Soc 2004, 52:774–778.

    Article  PubMed  Google Scholar 

  49. McDonald WM, Richard IH, DeLong MR: Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biol Psychiatry 2003, 54:363–375.

    Article  PubMed  Google Scholar 

  50. De Marchi N, Mennella R: Huntington’s disease and its association with psychopathology. Harv Rev Psychiatry 2000, 7:278–289.

    Article  PubMed  Google Scholar 

  51. Robinson RG, Chemerinski E, Jorge R: Pathophysiology of secondary depressions in the elderly. J Geriatr Psychiatry Neurol 1999, 12:128–136.

    Article  PubMed  CAS  Google Scholar 

  52. Beats BC, Sahakian BJ, Levy R: Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychol Med 1996, 26:591–603.

    PubMed  CAS  Google Scholar 

  53. Christensen H, Griffiths K, Mackinnon A, Jacomb P: A quantitative review of cognitive deficits in depression and Alzheimer-type dementia. J Int Neuropsychol Soc 1997, 3:631–351.

    PubMed  CAS  Google Scholar 

  54. Lesser IM, Miller BL, Boone KB, et al.: Brain injury and cognitive function in late-onset psychotic depression. J Neuropsychiatry Clin Neurosci 1991, 3:33–40.

    PubMed  CAS  Google Scholar 

  55. Dahabra S, Ashton CH, Bahrainian M, et al.: Structural and functional abnormalities in elderly patients clinically recovered from early and late-onset depression. Biol Psychiatry 1998, 44:34–46.

    Article  PubMed  CAS  Google Scholar 

  56. Wils V, Godderis J, Igodt P: [Late-life depression and subcortical ischemic white matter lesions]. Tijdschr Gerontol Geriatr 2001, 32:104–108.

    PubMed  CAS  Google Scholar 

  57. Videbech P, Ravnkilde B, Fiirgaard B, et al.: Structural brain abnormalities in unselected in-patients with major depression. Acta Psychiatr Scand 2001, 103:282–286.

    Article  PubMed  CAS  Google Scholar 

  58. Lee SH, Payne ME, Steffens DC, et al.: Subcortical lesion severity and orbitofrontal cortex volume in geriatric depression. Biol Psychiatry 2003, 54:529–533.

    Article  PubMed  Google Scholar 

  59. Baldwin R, Jeffries S, Jackson A, et al.: Treatment response in late-onset depression: relationship to neuropsychological, neuroradiological and vascular risk factors. Psychol Med 2004, 34:125–136.

    Article  PubMed  CAS  Google Scholar 

  60. Kumar A, Gupta RC, Albert Thomas M, et al.: Biophysical changes in normal-appearing white matter and subcortical nuclei in late-life major depression detected using magnetization transfer. Psychiatry Res 2004, 130:131–140. This article discusses the importance of white matter lesions in depression in later life.

    Article  PubMed  Google Scholar 

  61. Devanand DP, Adorno E, Cheng J, et al.: Late onset dysthymic disorder and major depression differ from early onset dysthymic disorder and major depression in elderly outpatients. J Affect Disord 2004, 78:259–267.

    Article  PubMed  CAS  Google Scholar 

  62. Krishnan KR, Taylor WD, McQuoid DR, et al.: Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biol Psychiatry 2004, 55:390–397.

    Article  PubMed  Google Scholar 

  63. Levy RM, Steffens DC, McQuoid DR, et al.: MRI lesion severity and mortality in geriatric depression. Am J Geriatr Psychiatry 2003, 11:678–682.

    Article  PubMed  Google Scholar 

  64. Taylor WD, MacFall JR, Steffens DC, et al.: Localization of age-associated white matter hyperintensities in late-life depression. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27:539–544.

    Article  PubMed  Google Scholar 

  65. Lavretsky H, Kumar A: Methylphenidate augmentation of citalopram in elderly depressed patients. Am J Geriatr Psychiatry 2001, 9:298–303.

    Article  PubMed  CAS  Google Scholar 

  66. Turner DC, Robbins TW, Clark L, et al.: Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 2003, 165:260–269.

    CAS  Google Scholar 

  67. Turner DC, Clark L, Pomarol-Clotet E, et al.: Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology 2004, 29:1363–1373.

    Article  PubMed  CAS  Google Scholar 

  68. Chaouloff F: Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Brain Res Rev 1993, 18:1–32.

    Article  PubMed  CAS  Google Scholar 

  69. Chaouloff F: Serotonin, stress and corticoids. J Psychopharmacol 2000, 14:139–151.

    PubMed  CAS  Google Scholar 

  70. Zisook S, Janowsky DS, Overall JE, Risch SC: The dexamethasone suppression test and unipolar/bipolar distinctions. J Clin Psychiatry 1985, 46:461–465.

    PubMed  CAS  Google Scholar 

  71. Dinan TG: Glucocorticoids and the genesis of depressive illness. A psychobiological model. Br J Psychiatry 1994, 163:365–371.

    Google Scholar 

  72. Cassidy F, Ritchie JC, Carroll BJ: Plasma dexamethasone concentration and cortisol response during manic episodes. Biol Psychiatry 1998, 43:747–754.

    Article  PubMed  CAS  Google Scholar 

  73. Rybakowski JK, Twardowska K: The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res 1999, 33:363–370.

    Article  PubMed  CAS  Google Scholar 

  74. Vieta E, Martinez-De-Osaba MJ, Colom F, et al.: Enhanced corticotropin response to corticotropin-releasing hormone as a predictor of mania in euthymic bipolar patients. Psychol Med 1999, 29:971–978.

    Article  PubMed  CAS  Google Scholar 

  75. Cervantes P, Gelber S, Kin FN, et al.: Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci 2001, 26:411–416.

    PubMed  CAS  Google Scholar 

  76. Deshauer D, Duffy A, Alda M, et al.: The cortisol awakening response in bipolar illness: a pilot study. Can J Psychiatry 2003, 48:462–466.

    PubMed  Google Scholar 

  77. Dinan TG, O’Brien S, Lavelle E, Scott LV: Further neuroendocrine evidence of enhanced vasopressin V3 receptor responses in melancholic depression. Psychol Med 2004, 34:169–172.

    Article  PubMed  CAS  Google Scholar 

  78. O’Toole SM, Sekula LK, Rubin RT: Pituitary-adrenal cortical axis measures as predictors of sustained remission in major depression. Biol Psychiatry 1997, 42:85–89.

    Article  PubMed  CAS  Google Scholar 

  79. Varghese FP, Brown ES: The hypothalamic-pituitary-adrenal axis in major depressive disorder: a brief primer for primary care physicians. Prim Care Companion J Clin Psychiatry 2001, 3:151–155.

    PubMed  Google Scholar 

  80. Zobel AW, Nickel T, Sonntag A, et al.: Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. A prospective study. J Psychiatr Res 2001, 35:83–94.

    Article  PubMed  CAS  Google Scholar 

  81. Carroll BJ, Curtis GC: Neuroendocrine identification of depressed patients. Aust N Z J Psychiatry 1976, 10:13–20.

    PubMed  CAS  Google Scholar 

  82. Carroll BJ, Feinberg M, Greden JF, et al.: A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch Gen Psychiatry 1981, 38:15–22.

    PubMed  CAS  Google Scholar 

  83. Krishnan KR, France RD, Pelton S, et al.: What does the dexamethasone suppression test identify? Biol Psychiatry 1985, 20:957–964.

    Article  PubMed  CAS  Google Scholar 

  84. Young AH, Gallagher P, Porter RJ: Elevation of the cortisoldehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry 2002, 159:1237–1239.

    Article  PubMed  Google Scholar 

  85. Plotsky PM, Owens MJ, Nemeroff CB: Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 1998, 21:293–307.

    Article  PubMed  CAS  Google Scholar 

  86. Posener JA, DeBattista C, Williams GH, et al.: 24-Hour monitoring of cortisol and corticotropin secretion in psychotic and nonpsychotic major depression. Arch Gen Psychiatry 2000, 57:755–760.

    Article  PubMed  CAS  Google Scholar 

  87. Krishnan KR, Doraiswamy PM, Lurie SN, et al.: Pituitary size in depression. J Clin Endocrinol Metab 1991, 72:256–259.

    PubMed  CAS  Google Scholar 

  88. Nemeroff CB, Krishnan KR, Reed D, et al.: Adrenal gland enlargement in major depression. A computed tomographic study. Arch Gen Psychiatry 1992, 49:384–387.

    PubMed  CAS  Google Scholar 

  89. Sassi RB, Nicoletti M, Brambilla P, et al.: Decreased pituitary volume in patients with bipolar disorder. Biol Psychiatry 2001, 50:271–280.

    Article  PubMed  CAS  Google Scholar 

  90. MacMaster FP, Kusumakar V: MRI study of the pituitary gland in adolescent depression. J Psychiatr Res 2004, 38:231–236.

    Article  PubMed  Google Scholar 

  91. Sapolsky RM, Pulsinelli WA: Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 1985, 229:1397–1400.

    Article  PubMed  CAS  Google Scholar 

  92. Morse JK, Davis JN: Regulation of ischemic hippocampal damage in the gerbil: adrenalectomy alters the rate of CA1 cell disappearance. Exp Neurol 1990, 110:86–92.

    Article  PubMed  CAS  Google Scholar 

  93. Antonawich FJ, Miller G, Rigsby DC, Davis JN: Regulation of ischemic cell death by glucocorticoids and adrenocorticotropic hormone. Neuroscience 1999, 88:319–325.

    Article  PubMed  CAS  Google Scholar 

  94. Chalmers DT, Kwak SP, Mansour A, Akil H, Watson SJ: Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. J Neurosci 1993, 13:914–923.

    PubMed  CAS  Google Scholar 

  95. Kuroda Y, Watanabe Y, Albeck DS, et al.: Effects of adrenalectomy and type I or type II glucocorticoid receptor activation on 5-HT1A and 5-HT2 receptor binding and 5-HT transporter mRNA expression in rat brain. Brain Res 1994, 648:157–161.

    Article  PubMed  CAS  Google Scholar 

  96. Meijer OC, de Kloet ER: Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur J Pharmacol 1994, 266:255–261.

    Article  PubMed  CAS  Google Scholar 

  97. Meijer OC, de Kloet ER: A role for the mineralocorticoid receptor in a rapid and transient suppression of hippocampal 5-HT1A receptor mRNA by corticosterone. J Neuroendocrinol 1995, 7:653–657.

    Article  PubMed  CAS  Google Scholar 

  98. Meijer OC, Cole TJ, Schmid W, et al.: Regulation of hippocampal 5-HT1A receptor mRNA and binding in transgenic mice with a targeted disruption of the glucocorticoid receptor. Brain Res Mol Brain Res 1997, 46:290–296.

    Article  PubMed  CAS  Google Scholar 

  99. Stokes PE: The potential role of excessive cortisol induced by HPA hyperfunction in the pathogenesis of depression. Eur Neuropsychopharmacol 1995, 5(suppl):77–82.

    Article  PubMed  CAS  Google Scholar 

  100. Domes G, Heinrichs M, Reichwald U, Hautzinger M: Hypothalamic-pituitary-adrenal axis reactivity to psychological stress and memory in middle-aged women: high responders exhibit enhanced declarative memory performance. Psychoneuroendocrinology 2002, 27:843–853.

    Article  PubMed  CAS  Google Scholar 

  101. Tops M, van der Pompe G, Baas D, et al.: Acute cortisol effects on immediate free recall and recognition of nouns depend on stimulus valence. Psychophysiology 2003, 40:167–173.

    Article  PubMed  Google Scholar 

  102. Strakowski SM, DelBello MP, Zimmerman ME, et al.: Ventricular and periventricular structural volumes in first-versus multiple-episode bipolar disorder. Am J Psychiatry 2002, 159:1841–1847.

    Article  PubMed  Google Scholar 

  103. Campbell S, Marriott M, Nahmias C, MacQueen GM: Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004, 161:598–607.

    Article  PubMed  Google Scholar 

  104. Sheline YI, Gado MH, Kraemer HC: Untreated depression and hippocampal volume loss. Am J Psychiatry 2003, 160:1516–1518.

    Article  PubMed  Google Scholar 

  105. O’Brien JT, Ames D, Schweitzer I, et al.: Clinical and magnetic resonance imaging correlates of hypothalamic-pituitaryadrenal axis function in depression and Alzheimer’s disease. Br J Psychiatry 1996, 168:679–687.

    PubMed  CAS  Google Scholar 

  106. Hatzinger M: Neuropeptides and the hypothalamic-pituitaryadrenocortical (HPA) system: review of recent research strategies in depression. World J Biol Psychiatry 2000, 1:105–111.

    Article  PubMed  CAS  Google Scholar 

  107. Dinan T: Novel approaches to the treatment of depression by modulating the hypothalamic - pituitary - adrenal axis. Hum Psychopharmacol 2001, 16:89–93.

    Article  PubMed  CAS  Google Scholar 

  108. Holsboer F: Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 2001, 62:77–91.

    Article  PubMed  CAS  Google Scholar 

  109. Pariante CM, Miller AH: Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001, 49:391–404.

    Article  PubMed  CAS  Google Scholar 

  110. Reus VI, Wolkowitz OM: Antiglucocorticoid drugs in the treatment of depression. Expert Opin Investig Drugs 2001, 10:1789–1796.

    Article  PubMed  CAS  Google Scholar 

  111. Nemeroff CB: New directions in the development of antidepressants: the interface of neurobiology and psychiatry. Hum Psychopharmacol 2002, 17(suppl 1):S13–16.

    Article  PubMed  CAS  Google Scholar 

  112. Calfa G, Kademian S, Ceschin D, et al.: Characterization and functional significance of glucocorticoid receptors in patients with major depression: modulation by antidepressant treatment. Psychoneuroendocrinology 2003, 28:687–701.

    Article  PubMed  CAS  Google Scholar 

  113. Deuschle M, Hamann B, Meichel C, et al.: Antidepressive treatment with amitriptyline and paroxetine: effects on saliva cortisol concentrations. J Clin Psychopharmacol 2003, 23:201–205.

    Article  PubMed  CAS  Google Scholar 

  114. Schule C, Baghai T, Rackwitz C, Laakmann G: Influence of mirtazapine on urinary free cortisol excretion in depressed patients. Psychiatry Res 2003, 120:257–264.

    Article  PubMed  CAS  Google Scholar 

  115. Porter RJ, Gallagher P, Watson S, Young AH: Corticosteroidserotonin interactions in depression: a review of the human evidence. Psychopharmacology (Berl) 2004, 173:1–17.

    Article  CAS  Google Scholar 

  116. Herbert J, Goodyer IM, Altham PM, et al.: Adrenal secretion and major depression in 8-to 16-year-olds, II. Influence of co-morbidity at presentation. Psychol Med 1996, 26:257–263.

    PubMed  CAS  Google Scholar 

  117. Goodyer IM, Herbert J, Altham PM: Adrenal steroid secretion and major depression in 8-to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychol Med 1998, 28:265–273.

    Article  PubMed  CAS  Google Scholar 

  118. Herbert J: Neurosteroids, brain damage, and mental illness. Exp Gerontol 1998, 33:713–727.

    Article  PubMed  CAS  Google Scholar 

  119. Goodyer IM, Herbert J, Tamplin A, Altham PM: First-episode major depression in adolescents. Affective, cognitive and endocrine characteristics of risk status and predictors of onset. Br J Psychiatry 2000, 176:142–149.

    Article  PubMed  CAS  Google Scholar 

  120. Goodyer IM, Herbert J, Tamplin A, Altham PM: Recent life events, cortisol, dehydroepiandrosterone and the onset of major depression in high-risk adolescents. Br J Psychiatry 2000, 177:499–504.

    Article  PubMed  CAS  Google Scholar 

  121. Goodyer IM, Park RJ, Herbert J: Psychosocial and endocrine features of chronic first-episode major depression in 8–16 year olds. Biol Psychiatry 2001, 50:351–357.

    Article  PubMed  CAS  Google Scholar 

  122. Goodyer IM, Herbert J, Tamplin A: Psychoendocrine antecedents of persistent first-episode major depression in adolescents: a community-based longitudinal enquiry. Psychol Med 2003, 33:601–610.

    Article  PubMed  CAS  Google Scholar 

  123. Bulbena A, Berrios GE: Cognitive function in the affective disorders: a prospective study. Psychopathology 1993, 26:6–12.

    Article  PubMed  CAS  Google Scholar 

  124. Zarate Jr CA, Tohen M, Land M, Cavanagh S: Functional impairment and cognition in bipolar disorder. Psychiatr Q 2000, 71:309–329.

    Article  PubMed  Google Scholar 

  125. McCall WV, Dunn AG: Cognitive deficits are associated with functional impairment in severely depressed patients. Psychiatry Res 2003, 121:179–184.

    Article  PubMed  Google Scholar 

  126. Lloyd GG, Lishman WA: Effect of depression on the speed of recall of pleasant and unpleasant experiences. Psychol Med 1975, 5:173–180.

    Article  PubMed  CAS  Google Scholar 

  127. Roiser J, Rubinsztein JS, Sahakian B: Cognition in depression. Psychiatry 2003, 2:43–47. This is a broad review of cognitive deficits in depression, emphasizing the relevance of hot processing.

    Google Scholar 

  128. Elliott R, Baker SC, Rogers RD, et al.: Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med 1997, 27:931–942.

    Article  PubMed  CAS  Google Scholar 

  129. Elliott R, Sahakian BJ, Herrod JJ, et al.: Abnormal response to negative feedback in unipolar depression: evidence for a diagnosis specific impairment. J Neurol Neurosurg Psychiatry 1997, 63:74–82.

    PubMed  CAS  Google Scholar 

  130. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ: Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. Neuroreport 2000, 11:1739–1744.

    Article  PubMed  CAS  Google Scholar 

  131. Rubinsztein JS, Fletcher PC, Rogers RD, et al.: Decision-making in mania: a PET study. Brain 2001, 124:2550–2563. This is a seminal study examining functional brain activation in manic patients when doing a decision-making task. Key neural substrates of abnormal decision making are outlined.

    Article  PubMed  CAS  Google Scholar 

  132. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ: The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry 2002, 59:597–604. This study discusses mood-congruent processing biases in depression. Medial and orbital prefrontal regions are thought to be important in mood-cognition interactions.

    Article  PubMed  Google Scholar 

  133. Drevets WC, Price JL, Simpson Jr JR, et al.: Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997, 386:824–827.

    Article  PubMed  CAS  Google Scholar 

  134. Mayberg HS, Liotti M, Brannan SK, et al.: Reciprocal limbiccortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999, 156:675–682.

    PubMed  CAS  Google Scholar 

  135. Liotti M, Mayberg HS, Brannan SK, et al.: Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 2000, 48:30–42.

    Article  PubMed  CAS  Google Scholar 

  136. Baker SC, Frith CD, Frackowiak RS, Dolan RJ: Active representation of shape and spatial location in man. Cereb Cortex 1996, 6:612–619.

    Article  PubMed  CAS  Google Scholar 

  137. Steffens DC, Wagner HR, Levy RM, et al.: Performance feedback deficit in geriatric depression. Biol Psychiatry 2001, 50:358–363. This study examines an extension of the effects of negative feedback into the geriatric depressed population, supporting studies linking orbitofrontal cortex dysfunction.

    Article  PubMed  CAS  Google Scholar 

  138. Starkstein SE, Mayberg HS, Berthier ML, et al.: Mania after brain injury: neuroradiological and metabolic findings. Ann Neurol 1990, 27:652–659.

    Article  PubMed  CAS  Google Scholar 

  139. Bechara A, Damasio AR, Damasio H, Anderson SW: Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50:7–15.

    Article  PubMed  CAS  Google Scholar 

  140. Bechara A, Damasio H, Tranel D, Anderson SW: Dissociation Of working memory from decision making within the human prefrontal cortex. J Neurosci 1998, 18:428–437.

    PubMed  CAS  Google Scholar 

  141. Bechara A, Tranel D, Damasio H: Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 2000, 123:2189–2202.

    Article  PubMed  Google Scholar 

  142. Bechara A, Martin EM: Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology 2004, 18:152–162.

    Article  PubMed  Google Scholar 

  143. Gomez-Beldarrain M, Harries C, Garcia-Monco JC, et al.: Patients with right frontal lesions are unable to assess and use advice to make predictive judgments. J Cogn Neurosci 2004, 16:74–89.

    Article  PubMed  Google Scholar 

  144. Verdejo A, Aguilar De Arcos F, Perez Garcia M: [Alterations to the decision making processes linked to the ventromedial prefrontal cortex in drug abusing patients]. Rev Neurol 2004, 38:601–606.

    PubMed  CAS  Google Scholar 

  145. Eslinger PJ, Damasio AR: Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 1985, 35:1731–1741.

    PubMed  CAS  Google Scholar 

  146. Manes F, Sahakian B, Clark L, et al.: Decision-making processes following damage to the prefrontal cortex. Brain 2002, 125:624–639.

    Article  PubMed  Google Scholar 

  147. Clark L, Manes F, Antoun N, et al.: The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia 2003, 41:1474–1483.

    Article  PubMed  Google Scholar 

  148. O’Brien JT, Sahakian BJ, Checkley SA: Cognitive impairments in patients with seasonal affective disorder. Br J Psychiatry 1993, 163:338–343.

    PubMed  CAS  Google Scholar 

  149. Silverstein ML, Harrow M, Bryson GJ: Neuropsychological prognosis and clinical recovery. Psychiatry Res 1994, 52:265–272.

    Article  PubMed  CAS  Google Scholar 

  150. Ferrier IN, Stanton BR, Kelly TP, Scott J: Neuropsychological function in euthymic patients with bipolar disorder. Br J Psychiatry 1999, 175:246–251.

    Article  PubMed  CAS  Google Scholar 

  151. Rubinsztein JS, Michael A, Paykel ES, Sahakian BJ: Cognitive impairment in remission in bipolar affective disorder. Psychol Med 2000, 30:1025–1036.

    Article  PubMed  CAS  Google Scholar 

  152. Clark L, Iversen SD, Goodwin GM: Sustained attention deficit in bipolar disorder. Br J Psychiatry 2002, 180:313–319.

    Article  PubMed  Google Scholar 

  153. Martinez-Aran A, Penades R, Vieta E, et al.: Executive function in patients with remitted bipolar disorder and schizophrenia and its relationship with functional outcome. Psychother Psychosom 2002, 71:39–46.

    Article  PubMed  CAS  Google Scholar 

  154. Gildengers AG, Butters MA, Seligman K, et al.: Cognitive functioning in late-life bipolar disorder. Am J Psychiatry 2004, 161:736–738.

    Article  PubMed  Google Scholar 

  155. Coull JT, Frith CD, Frackowiak RS, Grasby PM: A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 1996, 34:1085–1095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlain, S.R., Sahakian, B.J. Cognition in mania and depression: Psychological models and clinical implications. Curr Psychiatry Rep 6, 451–458 (2004). https://doi.org/10.1007/s11920-004-0010-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-004-0010-3

Keywords

Navigation