Skip to main content

Advertisement

Log in

Neurology of Preeclampsia and Related Disorders: an Update in Neuro-obstetrics

  • Secondary Headache (M Robbins, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Preeclampsia and related hypertensive disorders of pregnancy affect up to 10% of pregnancies. Neurological complications are common and neurologists often become involved in the care of obstetric patients with preeclampsia. Here, we review the definition(s), epidemiology, clinical features, and pathophysiology of preeclampsia, focusing on maternal neurological complications and headache as a common presenting symptom of preeclampsia.

Recent Findings

Neurological symptoms are early and disease-defining features of preeclampsia. Neurological complications of preeclampsia may include headaches, visual symptoms, cerebral edema, seizures, or acute cerebrovascular disorders such as intracerebral hemorrhage or reversible cerebral vasoconstriction syndrome. A history of migraine is an independent risk factor for vascular diseases during pregnancy, including preeclampsia and maternal stroke. The pathophysiology of both preeclampsia and migraine is complex, and the mechanisms linking the two are not fully understood. Overlapping clinical and pathophysiological features of migraine and preeclampsia include inflammation, vascular endothelial dysfunction, and changes in vasoreactivity.

Summary

Neurological complications are recognized as a major contributor to maternal morbidity and mortality. Pregnant and postpartum women commonly present with headache, and red flags in the clinical history and examination should prompt urgent neuroimaging and laboratory evaluation. A focused headache history should be elicited from patients as part of routine obstetrical care to identify patients at an increased risk of preeclampsia and related hypertensive disorders of pregnancy. Collaborative models of care and scientific investigation in the emerging field of neuro-obstetrics have the common goal of reducing the risk of maternal neurological morbidity and mortality from preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control. Data on selected pregnancy complications in the United States. cdc.gov. 2019 Available from: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pregnancy-complications-data.htm#hyper.  Accessed 29 Dec 2020

  2. Centers for Disease Control. Pregnancy mortality surveillance system [Internet]. cdc.gov. Atlanta; Available from: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pmss.html. Accessed 14 Feb 2019

  3. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller A-B, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2:e323–33.

    PubMed  Google Scholar 

  4. Hibbard LT. Maternal mortality due to acute toxemia. Obstet Gynecol. 1973;42:263–70.

    CAS  PubMed  Google Scholar 

  5. Gibbs CE, Locke WE. Maternal deaths in Texas, 1969 to 1973. A report of 501 consecutive maternal deaths from the Texas Medical Association’s Committee on Maternal Health. Am J Obs Gynecol. 1976;126:687–92.

    CAS  Google Scholar 

  6. Judy AE, McCain CL, Lawton ES, Morton CH, Main EK, Druzin ML. Systolic hypertension, preeclampsia-related mortality, and stroke in California. Obstet Gynecol. 2019;133:1151–9.

    PubMed  Google Scholar 

  7. Hasegawa J, Ikeda T, Sekizawa A, Tanaka H, Nakata M, Murakoshi T, et al. Maternal death due to stroke associated with pregnancy-induced hypertension. Circ J. 2015;79:1835–40.

    PubMed  Google Scholar 

  8. Bateman BT, Schumacher HC, Bushnell CD, Pile-Spellman J, Simpson LL, Sacco RL, et al. Intracerebral hemorrhage in pregnancy: frequency, risk factors, and outcome. Neurology. 2006 ed. 2006;67:424–9.

    CAS  PubMed  Google Scholar 

  9. Liang C-C, Chang S-D, Lai S-L, Hsieh C-C, Chueh H-Y, Lee T-H. Stroke complicating pregnancy and the puerperium. Eur J Neurol. 2006;13:1256–60.

    PubMed  Google Scholar 

  10. Foo L, Bewley S, Rudd A. Maternal death from stroke: a thirty year national retrospective review. Eur J Obstet Gynecol Reprod Biol. 2013;171:266–70.

    PubMed  Google Scholar 

  11. Martin JN Jr, Thigpen BD, Moore RC, Rose CH, Cushman J, May W. Stroke and severe preeclampsia and eclampsia: a paradigm shift focusing on systolic blood pressure. Obstet Gynecol. 2005;105:246–54.

    PubMed  Google Scholar 

  12. Cleary KL, Siddiq Z, Ananth CV, Wright JD, Too G, D’Alton ME, et al. Use of antihypertensive medications during delivery hospitalizations complicated by preeclampsia. Obstet Gynecol. 2018;131:441–50.

    PubMed  PubMed Central  Google Scholar 

  13. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 202: Gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133:e1–e25 Current diagnostic criteria for gestational hypertension and preeclampsia as defined by the American College of Obstetricians and Gynecologists (ACOG).

    Google Scholar 

  14. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018;72:24–43 Current diagnostic criteria for hypertensive disorders of pregnancy as defined by the International Society for the Study of Hypertension in Pregnancy (ISSHP).

    CAS  PubMed  Google Scholar 

  15. Chesley L. Introduction, history, controversies, and definitions. In: Taylor JR, Cunningham FG, Lindheimer M, editors. Chesley’s hypertensive disorders in pregnancy. 4 ed. 2015. pp. 1–24.

  16. Johns R. Observations on puerperal convulsions. Dublin J Med. Sci Springer London. 1843;24:101–15.

    Google Scholar 

  17. Douglas KA, Redman CW. Eclampsia in the United Kingdom. BMJ. BMJ Publishing Group. 1994;309:1395–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

    Google Scholar 

  19. Garovic VD, White WM, Vaughan L, Saiki M, Parashuram S, Garcia-Valencia O, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol. 2020;75:2323–34.

    PubMed  PubMed Central  Google Scholar 

  20. Shahul S, Tung A, Minhaj M, Nizamuddin J, Wenger J, Mahmood E, et al. Racial disparities in comorbidities, complications, and maternal and fetal outcomes in women with preeclampsia/eclampsia. Hypertens Pregnancy. 2015;34:506–15.

    PubMed  PubMed Central  Google Scholar 

  21. Johnson JD, Louis JM. Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. Am J Obs Gynecol. 2020.

  22. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol. 2013;170:1–7.

    Google Scholar 

  23. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 203: Chronic hypertension in pregnancy. Obstet Gynecol. 2019;133:e26–50.

    Google Scholar 

  24. Lee S, Kim Y, Navi BB, Abdelkhaleq R, Salazar-Marioni S, Blackburn SL, Bambhroliya AB, Lopez-Rivera V, Vahidy F, Savitz SI, Medhus A, Kamel H, Grotta JC, McCullough L, Chen PR, Sheth SA Risk of intracranial hemorrhage associated with pregnancy in women with cerebral arteriovenous malformations. J Neurointerv Surg. 2020, neurintsurg-2020-016838.

  25. Maor GS, Faden MS, Brown R. Prevalence, risk factors and pregnancy outcomes of women with vascular brain lesions in pregnancy. Arch Gynecol Obstet. 2020;301:665–70.

    PubMed  Google Scholar 

  26. Nussbaum ES, Goddard JK, Davis AR. A systematic review of intracranial aneurysms in the pregnant patient - a clinical conundrum. Eur J Obstet Gynecol. 2020;254:79–86.

    Google Scholar 

  27. Desai M, Wali AR, Birk HS, Santiago-Dieppa DR, Khalessi AA. Role of pregnancy and female sex steroids on aneurysm formation, growth, and rupture: a systematic review of the literature. Neurosurg. 2019;47:E8.

    Google Scholar 

  28. Meeks JR, Bambhroliya AB, Alex KM, Sheth SA, Savitz SI, Miller EC, et al. Association of primary intracerebral hemorrhage with pregnancy and the postpartum period. JAMA Netw Open. 2020;3:e202769.

    PubMed  PubMed Central  Google Scholar 

  29. Miller EC, Gatollari HJ, Too G, Boehme AK, Leffert LR, Marshall RS, et al. Risk factors for pregnancy-associated stroke in women with preeclampsia. Stroke. American Heart Association, Inc. 2017;48:1752–9.

    PubMed  PubMed Central  Google Scholar 

  30. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.

    PubMed  Google Scholar 

  31. Wu P, Jordan KP, Chew-Graham CA, Coutinho T, Lundberg GP, Park KE, et al. Temporal trends in pregnancy-associated stroke and its outcomes among women with hypertensive disorders of pregnancy. J Am Heart Assoc. 2020;9:e016182.

    PubMed  PubMed Central  Google Scholar 

  32. Wabnitz A, Bushnell C. Migraine, cardiovascular disease, and stroke during pregnancy: systematic review of the literature. Cephalalgia. 2015;35:132–9 Systematic review of association between migraine and adverse pregnancy outcomes.

    PubMed  Google Scholar 

  33. Matthys LA, Coppage KH, Lambers DS, Barton JR, Sibai BM. Delayed postpartum preeclampsia: an experience of 151 cases. Am J Obs Gynecol. 2004;190:1464–6.

    Google Scholar 

  34. Al-Safi Z, Imudia AN, Filetti LC, Hobson DT, Bahado-Singh RO, Awonuga AO. Delayed postpartum preeclampsia and eclampsia: demographics, clinical course, and complications. Obstet Gynecol. 2011;118:1102–7.

    PubMed  Google Scholar 

  35. Redman EK, Hauspurg A, Hubel CA, Roberts JM, Jeyabalan A. Clinical course, associated factors, and blood pressure profile of delayed-onset postpartum preeclampsia. Obstet Gynecol. 2019;134:995–1001.

    PubMed  PubMed Central  Google Scholar 

  36. Too G, Wen T, Boehme AK, Miller EC, Leffert LR, Attenello FJ, et al. Timing and risk factors of postpartum stroke. Obstet Gynecol. 2018;131:70–8.

    PubMed  PubMed Central  Google Scholar 

  37. Kamel H, Navi BB, Sriram N, Hovsepian DA, Devereux RB, Elkind MSV. Risk of a thrombotic event after the 6-week postpartum period. N Engl J Med. 2014;370:1307–15 Epidemiological study using administrative data established that risk of thrombotic events after delivery extended beyond the 6 week postpartum period.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10:e003497 Systematic review and meta-analysis of the impact of preeclampsia on future cardiovascular disease in women.

    PubMed  Google Scholar 

  39. Miller EC, Boehme AK, Chung NT, Wang SS, Lacey JV, Lakshminarayan K, et al. Aspirin reduces long-term stroke risk in women with prior hypertensive disorders of pregnancy. Neurology. 2019;92:e305–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith WT. Parturition and the principles and practice of obstetrics. Lea & Blanchard; 1849.

  41. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obs Gynecol. 1989;161:1200–4.

    CAS  Google Scholar 

  42. Myatt L, Webster RP. Vascular biology of preeclampsia. J Thromb Haemost. 2009;7:375–84.

    CAS  PubMed  Google Scholar 

  43. Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal models of preeclampsia: causes, consequences, and interventions. Hypertension. 2020;75:1363–81 Comprehensive review of current animal models of preeclampsia.

    CAS  PubMed  Google Scholar 

  44. Michalczyk M, Celewicz A, Celewicz M, Woźniakowska-Gondek P, Rzepka R. The role of inflammation in the pathogenesis of preeclampsia. Yi Y-S, editor. Mediators Inflamm. Hindawi; 2020;2020:3864941–9.

  45. Johnson AC, Cipolla MJ. Impaired function of cerebral parenchymal arterioles in experimental preeclampsia. Microvasc Res. 2018;119:64–72 Elsevier; Translational study demonstrating cerebral arteriolar dysfunction in an animal model of preeclampsia.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sonneveld MJ, Brusse IA, Duvekot JJ, Steegers EAP, Grune F, Visser GH. Cerebral perfusion pressure in women with preeclampsia is elevated even after treatment of elevated blood pressure. Acta Obstet Gynecol Scand. John Wiley & Sons, Ltd. 2014;93:508–11. https://doi.org/10.1111/aogs.12358.

    Article  PubMed  Google Scholar 

  47. Richards A, Graham D, Bullock R. Clinicopathological study of neurological complications due to hypertensive disorders of pregnancy. J Neurol Neurosurg Psychiatry. 4 ed. 1988;51:416–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. van Veen TR, Panerai RB, Haeri S, Griffioen AC, Zeeman GG, Belfort MA. Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol. 2013;122:1064–9.

    PubMed  Google Scholar 

  49. van Veen TR, Panerai RB, Haeri S, Singh J, Adusumalli JA, Zeeman GG, et al. Cerebral autoregulation in different hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2015;212:513.e1–7.

    Google Scholar 

  50. Williams KP, Galerneau F, Small M. Transfer function analysis of dynamic cerebral autoregulation in preeclampsia. Pregnancy Hypertens. 2015;5:322–4.

    PubMed  Google Scholar 

  51. Warrington JP, Fan F, Murphy SR, Roman RJ, Drummond HA, Granger JP, et al. Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability. Phys Rep. 2014;2:e12134 Translational study demonstrating impaired autoregulation and blood–brain barrier compromise in a preeclampsia animal model.

    Google Scholar 

  52. Warrington JP, Fan F, Duncan J, Cunningham MW, LaMarca BB, Dechend R, et al. The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats. Biol Sex Differ. 2019;10:58.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Maeda KJ, McClung DM, Showmaker KC, Warrington JP, Ryan MJ, Garrett MR, et al. Endothelial cell disruption drives increased blood brain barrier permeability and cerebral edema in the Dahl SS/jr rat model of superimposed preeclampsia. Am J Physiol Heart Circ Physiol. American Physiological Society Rockville, MD; 2020;ajpheart.00383.2020.

  54. Janzarik WG, Gerber A-K, Markfeld-Erol F, Sommerlade L, Allignol A, Reinhard M. No long-term impairment of cerebral autoregulation after preeclampsia. Pregnancy Hypertens. 2018;13:171–3.

    PubMed  Google Scholar 

  55. Wallace K, Bean C, Bowles T, Spencer S-K, Randle W, Kyle PB, et al. Hypertension, anxiety, and blood-brain barrier permeability are increased in postpartum severe preeclampsia/hemolysis, elevated liver enzymes, and low platelet count syndrome rats. Hypertension. 2018;72:946–54.

    CAS  PubMed  Google Scholar 

  56. Warrington JP, Drummond HA, Granger JP, Ryan MJ. Placental ischemia-induced increases in brain water content and cerebrovascular permeability: role of TNF-α. Am J Phys Regul Integr Comp Phys. 2015;309:R1425–31.

    CAS  Google Scholar 

  57. Bean C, Spencer S-K, Pabbidi MR, Szczepanski J, Araji S, Dixon S, et al. Peripheral anti-angiogenic imbalance during pregnancy impairs myogenic tone and increases cerebral edema in a rodent model of HELLP syndrome. Brain Sci. 2018;8(12):216.

    CAS  PubMed Central  Google Scholar 

  58. Digre KB, Varner MW, Osborn AG, Crawford S. Cranial magnetic resonance imaging in severe preeclampsia vs eclampsia. Arch Neurol. 1993;50:399–406.

    CAS  PubMed  Google Scholar 

  59. Shah AK, Rajamani K, Whitty JE. Eclampsia: a neurological perspective. J Neurol Sci. 2008;271:158–67.

    CAS  PubMed  Google Scholar 

  60. Brewer J, Owens MY, Wallace K, Reeves AA, Morris R, Khan M, et al. Posterior reversible encephalopathy syndrome in 46 of 47 patients with eclampsia. Am J Obs Gynecol. 2013;208:468.e1–6.

    Google Scholar 

  61. Mayama M, Uno K, Tano S, Yoshihara M, Ukai M, Kishigami Y, et al. Incidence of posterior reversible encephalopathy syndrome in eclamptic and patients with preeclampsia with neurologic symptoms. Am J Obs Gynecol. 2016;215:239.e1–5.

    Google Scholar 

  62. Postma IR, Slager S, Kremer HPH, de Groot JC, Zeeman GG. Long-term consequences of the posterior reversible encephalopathy syndrome in eclampsia and preeclampsia: a review of the obstetric and nonobstetric literature. Obstet Gynecol Surv. 2014;69:287–300.

    PubMed  Google Scholar 

  63. Fang X, Liang Y, Chen D, Liu Y, Xie M, Zhang W. Contribution of excess inflammation to a possible rat model of eclamptic reversible posterior leukoencephalopathy syndrome induced by lipopolysaccharide and pentylenetetrazol: a preliminary study. Cytokine. 2020;135:155212.

    CAS  PubMed  Google Scholar 

  64. Cornelius DC. Preeclampsia: from inflammation to immunoregulation. Clin Med Insights Blood Disord. 2018;11:1179545X17752325.

    PubMed  PubMed Central  Google Scholar 

  65. Huang Q, Hu B, Han X, Yang J, Di X, Bao J, et al. Cyclosporin A ameliorates eclampsia seizure through reducing systemic inflammation in an eclampsia-like rat model. Hypertens Res. 2020;43:263–70.

    CAS  PubMed  Google Scholar 

  66. van den Berg CB, Duvekot JJ, Güzel C, Hansson SR, de Leeuw TG, Steegers EAP, et al. Elevated levels of protein AMBP in cerebrospinal fluid of women with preeclampsia compared to normotensive pregnant women. Prot Clin Appl. Wiley-Blackwell. 2016;11:1600082–10.

    Google Scholar 

  67. Ciampa E, Li Y, Dillon S, Lecarpentier E, Sorabella L, Libermann TA, et al. Cerebrospinal fluid protein changes in preeclampsia. Hypertension. 2018;72:219–26.

    CAS  PubMed  Google Scholar 

  68. Clayton AM, Shao Q, Paauw ND, Giambrone AB, Granger JP, Warrington JP. Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav Immun. 2018;70:376–89.

    PubMed  PubMed Central  Google Scholar 

  69. Burwick RM, Togioka BM, Speranza RJ, Gaffney JE, Roberts VHJ, Frias AE, et al. Assessment of blood-brain barrier integrity and neuroinflammation in preeclampsia. Am J Obs Gynecol. 2019;221:269.e1–8.

    Google Scholar 

  70. Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: their role in normal and complicated pregnancies. J Immunol. 2019;203:2757–69.

    CAS  PubMed  Google Scholar 

  71. Brien M-E, Baker B, Duval C, Gaudreault V, Jones RL, Girard S. Alarmins at the maternal-fetal interface: involvement of inflammation in placental dysfunction and pregnancy complications. Can J Physiol Pharmacol. 2019;97:206–12.

    CAS  PubMed  Google Scholar 

  72. Kohli S, Ranjan S, Hoffmann J, Kashif M, Daniel EA, Al-Dabet MM, et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood Am Soc Hematol. 2016;128:2153–64.

    CAS  Google Scholar 

  73. Amburgey OA, Chapman AC, May V, Bernstein IM, Cipolla MJ. Plasma from preeclamptic women increases blood-brain barrier permeability: role of vascular endothelial growth factor signaling. Hypertension. 2010;56:1003–8.

    CAS  PubMed  Google Scholar 

  74. Hod T, Cerdeira AS, Karumanchi SA. Molecular mechanisms of preeclampsia. Cold Spring Harb Perspect Med. 2015;5.

  75. Cross SN, Ratner E, Rutherford TJ, Schwartz PE, Norwitz ER. Bevacizumab-mediated interference with VEGF signaling is sufficient to induce a preeclampsia-like syndrome in nonpregnant women. Rev Obstet Gynecol. 2012;5:2–8.

    PubMed  PubMed Central  Google Scholar 

  76. Zuo P-Y, Chen X-L, Liu Y-W, Xiao C-L, Liu C-Y. Increased risk of cerebrovascular events in patients with cancer treated with bevacizumab: a meta-analysis. PLoS One. 2014;9:e102484.

    PubMed  PubMed Central  Google Scholar 

  77. Yousif D, Bellos I, Penzlin AI, Hijazi MM, Illigens BM-W, Pinter A, et al. Autonomic dysfunction in preeclampsia: a systematic review. Front Neurol. 2019;10:816.

    PubMed  PubMed Central  Google Scholar 

  78. Johnson AC, Nagle KJ, Tremble SM, Cipolla MJ. The contribution of normal pregnancy to eclampsia. PLoS One. 2015;10:e0133953 Translational study demonstrating increased seizure susceptibility in normal pregnancy as a contributor to eclampsia physiology.

    PubMed  PubMed Central  Google Scholar 

  79. Rocha EA, Topcuoglu MA, Silva GS, Singhal AB. RCVS2 score and diagnostic approach for reversible cerebral vasoconstriction syndrome. Neurology. 2019;92:e639–47 Validated diagnostic approach to reversible cerebral vasoconstriction syndrome, regardless of association with pregnancy.

    PubMed  Google Scholar 

  80. Cotton DB, Hallak M, Janusz C, Irtenkauf SM, Berman RF. Central anticonvulsant effects of magnesium sulfate on N-methyl-D-aspartate-induced seizures. Am J Obs Gynecol. 1993;168:974–8.

    CAS  Google Scholar 

  81. Euser AG, Cipolla MJ. Resistance artery vasodilation to magnesium sulfate during pregnancy and the postpartum state. Am J Physiol Heart Circ Physiol. 2005;288:H1521–5.

    CAS  PubMed  Google Scholar 

  82. Chardain A, Mesnage V, Alamowitch S, Bourdain F, Crozier S, Lenglet T, et al. Posterior reversible encephalopathy syndrome (PRES) and hypomagnesemia: a frequent association? Rev Neurol (Paris). 2016;172:384–8.

    CAS  Google Scholar 

  83. Fang X, Wang H, Liu Z, Chen J, Tan H, Liang Y, et al. Posterior reversible encephalopathy syndrome in preeclampsia and eclampsia: the role of hypomagnesemia. Seizure. 2020;76:12–6.

    PubMed  Google Scholar 

  84. Mijalski C, Dakay K, Miller-Patterson C, Saad A, Silver B, Khan M. Magnesium for treatment of reversible cerebral vasoconstriction syndrome: case series. Neurohospitalist. 2016;6:111–3.

    PubMed  Google Scholar 

  85. Elharram M, Dayan N, Kaur A, Landry T, Pilote L. Long-term cognitive impairment after preeclampsia: a systematic review and meta-analysis. Obstet Gynecol. 2018;132:355–64.

    PubMed  Google Scholar 

  86. Basit S, Wohlfahrt J, Boyd HA. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. BMJ. 2018;363:k4109.

    PubMed  PubMed Central  Google Scholar 

  87. Siepmann T, Boardman H, Bilderbeck A, Griffanti L, Kenworthy Y, Zwager C, et al. Long-term cerebral white and gray matter changes after preeclampsia. Neurology. 2017;88:1256–64.

    PubMed  PubMed Central  Google Scholar 

  88. Soma-Pillay P, Suleman FE, Makin JD, Pattinson RC. Cerebral white matter lesions after pre-eclampsia. Pregnancy Hypertens. 2017;8:15–20.

    CAS  PubMed  Google Scholar 

  89. Postma IR, Bouma A, de Groot JC, Aukes AM, Aarnoudse JG, Zeeman GG. Cerebral white matter lesions, subjective cognitive failures, and objective neurocognitive functioning: a follow-up study in women after hypertensive disorders of pregnancy. J Clin Exp Neuropsychol. 2016;38:585–98.

    PubMed  Google Scholar 

  90. Miller KB, Miller VM, Barnes JN. Pregnancy history, hypertension, and cognitive impairment in postmenopausal women. Curr Hypertens Rep. 2019;21:93.

    PubMed  PubMed Central  Google Scholar 

  91. Grossman TB, Robbins MS, Govindappagari S, Dayal AK. Delivery outcomes of patients with acute migraine in pregnancy: a retrospective study. Headache. 2017;57:605–11.

    PubMed  Google Scholar 

  92. Kurth T, Gaziano JM, Cook NR, Logroscino G, Diener H-C, Buring JE. Migraine and risk of cardiovascular disease in women. JAMA. 2006;296:283–91.

    CAS  PubMed  Google Scholar 

  93. Sanchez SE, Qiu C, Williams MA, Lam N, Sorensen TK. Headaches and migraines are associated with an increased risk of preeclampsia in Peruvian women. Am J Hypertens. 2008;21:360–4.

    PubMed  Google Scholar 

  94. Levy D, Labastida-Ramirez A, MaassenVanDenBrink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache. Cephalalgia. 2019;39:1606–22.

    PubMed  Google Scholar 

  95. Heatley RV, Denburg JA, Bayer N, Bienenstock J. Increased plasma histamine levels in migraine patients. Clin Allergy. 1982;12:145–9.

    CAS  PubMed  Google Scholar 

  96. Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci. 1987;7:4129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Perini F, D’Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, et al. Plasma cytokine levels in migraineurs and controls. Headache. 2005;45:926–31.

    PubMed  Google Scholar 

  98. Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48:856–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Danese E, Montagnana M, Lippi G. Platelets and migraine. Thromb Res. 2014;134:17–22.

    CAS  PubMed  Google Scholar 

  100. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco MC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    CAS  PubMed  Google Scholar 

  101. Theilen LH, Campbell HD, Mumford SL, Purdue-Smithe AC, Sjaarda LA, Perkins NJ, et al. Platelet activation and placenta-mediated adverse pregnancy outcomes: an ancillary study to the Effects of Aspirin in Gestation and Reproduction trial. Am J Obs Gynecol. 2020;223:741.e1–741.e12.

    CAS  Google Scholar 

  102. Lee S-T, Chu K, Jung K-H, Kim DH, Kim E-H, Choe VN, et al. Decreased number and function of endothelial progenitor cells in patients with migraine. Neurology. 2008;70:1510–7.

    PubMed  Google Scholar 

  103. Luppi P, Powers RW, Verma V, Edmunds L, Plymire D, Hubel CA. Maternal circulating CD34+VEGFR-2+ and CD133+VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci. 2010;17:643–52.

    PubMed  Google Scholar 

  104. Laganà AS, Giordano D, Loddo S, Zoccali G, Vitale SG, Santamaria A, et al. Decreased endothelial progenitor cells (EPCs) and increased natural killer (NK) cells in peripheral blood as possible early markers of preeclampsia: a case-control analysis. Arch Gynecol Obstet. 2017;295:867–72.

    PubMed  Google Scholar 

  105. Stovner L, Hagen K, Jensen R, Katsarava Z, Lipton R, Scher A, et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia. 2007;27:193–210.

    PubMed  Google Scholar 

  106. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.

  107. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:954–76.

  108. Buse DC, Loder EW, Gorman JA, Stewart WF, Reed ML, Fanning KM, et al. Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) Study. Headache. 2013;53:1278–99.

    PubMed  Google Scholar 

  109. Lyngberg AC, Rasmussen BK, Jørgensen T, Jensen R. Has the prevalence of migraine and tension-type headache changed over a 12-year period? A Danish population survey. Eur J Epidemiol. 2005;20:243–9.

    PubMed  Google Scholar 

  110. Negro A, Delaruelle Z, Ivanova TA, Khan S, Ornello R, Raffaelli B, et al. Headache and pregnancy: a systematic review. J Headache Pain. 2017;18:106 A systematic review that summarizes the available data on headache and pregnancy.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Do TP, Remmers A, Schytz HW, Schankin C, Nelson SE, Obermann M, et al. Red and orange flags for secondary headaches in clinical practice: SNNOOP10 list. Neurology. 2019;92:134–44.

    PubMed  PubMed Central  Google Scholar 

  112. Robbins MS, Farmakidis C, Dayal AK, Lipton RB. Acute headache diagnosis in pregnant women: a hospital-based study. Neurology. 2015;85:1024–30.

    PubMed  PubMed Central  Google Scholar 

  113. Raffaelli B, Siebert E, Körner J, Liman T, Reuter U, Neeb L. Characteristics and diagnoses of acute headache in pregnant women—a retrospective cross-sectional study. J Headache Pain. 2017;18:114.

    PubMed  PubMed Central  Google Scholar 

  114. Vgontzas A, Robbins MS. A hospital based retrospective study of acute postpartum headache. Headache. 2018;58:845–51.

    PubMed  Google Scholar 

  115. Afridi SK. Current concepts in migraine and their relevance to pregnancy. Obstet Med. 2018;11:154–9.

    PubMed  PubMed Central  Google Scholar 

  116. Granella F, Sances G, Zanferrari C, Costa A, Martignoni E, Manzoni GC. Migraine without aura and reproductive life events: a clinical epidemiological study in 1300 women. Headache. 1993;33:385–9.

    CAS  PubMed  Google Scholar 

  117. Goldszmidt E, Kern R, Chaput A, Macarthur A. The incidence and etiology of postpartum headaches: a prospective cohort study. Can J Anaesth. 2005;52:971–7.

    PubMed  Google Scholar 

  118. Sances G, Granella F, Nappi RE, Fignon A, Ghiotto N, Polatti F, et al. Course of migraine during pregnancy and postpartum: a prospective study. Cephalalgia. 2003;23:197–205.

    CAS  PubMed  Google Scholar 

  119. Burch R. Headache in pregnancy and the puerperium. Neurol Clin. 2019;37:31–51.

    PubMed  Google Scholar 

  120. Lee VH, Wijdicks EFM, Manno EM, Rabinstein AA. Clinical spectrum of reversible posterior leukoencephalopathy syndrome. Arch Neurol. 2008;65:205–10.

    PubMed  Google Scholar 

  121. Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol. 2012;11:906–17.

    PubMed  Google Scholar 

  122. Raffaelli B, Neeb L, Israel-Willner H, Körner J, Liman T, Reuter U, et al. Brain imaging in pregnant women with acute headache. J Neurol. 2018;265:1836–43.

    PubMed  Google Scholar 

  123. Sandoe CH, Lay C. Secondary headaches during pregnancy: when to worry. Curr Neurol Neurosci Rep. 2019;19:27.

    PubMed  Google Scholar 

  124. Anderson A, Singh J, Bove R. Neuroimaging and radiation exposure in pregnancy. Handb Clin Neurol. 2020;171:179–91 Current review of best practices for neuroimaging during pregnancy.

    PubMed  Google Scholar 

  125. Ladhani NNN, Swartz RH, Foley N, Nerenberg K, Smith EE, Gubitz G, et al. Canadian Stroke Best Practice consensus statement: acute stroke management during pregnancy. Int J Stroke. 2018;49:174749301878661–16 Expert consensus-based guidelines for management of acute stroke in pregnancy.

    Google Scholar 

  126. Brusse IA, Kluivers ACM, Zambrano MD, Shetler K, Miller EC. Neuro-obstetrics: a multidisciplinary approach to care of women with neurologic disease. Handb Clin Neurol. 2020;171:143–60.

    PubMed  PubMed Central  Google Scholar 

  127. LeFevre ML. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161:819.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliza C. Miller.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Secondary Headache

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, E.C., Vollbracht, S. Neurology of Preeclampsia and Related Disorders: an Update in Neuro-obstetrics. Curr Pain Headache Rep 25, 40 (2021). https://doi.org/10.1007/s11916-021-00958-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-021-00958-z

Keywords

Navigation