Skip to main content

Advertisement

Log in

Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease

  • Skeletal Development (R Marcucio and J Feng, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Fibroblast growth factor receptor (FGFR) signaling regulates proliferation and differentiation during development and homeostasis. While membrane-bound FGFRs play a central role in these processes, the function of nuclear FGFRs is also critical. Here, we highlight mechanisms for nuclear FGFR translocation and the effects of nuclear FGFRs on skeletal development and disease.

Recent Findings

Full-length FGFRs, internalized by endocytosis, enter the nucleus through β-importin-dependent mechanisms that recognize the nuclear localization signal within FGFs. Alternatively, soluble FGFR intracellular fragments undergo nuclear translocation following their proteolytic release from the membrane. FGFRs enter the nucleus during the cellular transition between proliferation and differentiation. Once nuclear, FGFRs interact with chromatin remodelers to alter the epigenetic state and transcription of their target genes. Dysregulation of nuclear FGFR is linked to the etiology of congenital skeletal disorders and neoplastic transformation.

Summary

Revealing the activities of nuclear FGFR will advance our understanding of 20 congenital skeletal disorders caused by FGFR mutations, as well as FGFR-related cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.

    Article  CAS  PubMed  Google Scholar 

  3. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446–65.

    Article  CAS  PubMed  Google Scholar 

  4. Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development. 2000;127(9):1845–55.

    CAS  PubMed  Google Scholar 

  5. Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.

    CAS  PubMed  Google Scholar 

  7. Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135(3):483–91.

    Article  CAS  PubMed  Google Scholar 

  8. Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003;130(13):3063–74.

    Article  CAS  PubMed  Google Scholar 

  9. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.

    Article  CAS  PubMed  Google Scholar 

  10. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.

    Article  CAS  PubMed  Google Scholar 

  11. Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone. 2007;40(3):577–86.

    Article  CAS  PubMed  Google Scholar 

  12. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64(4):841–8.

    Article  CAS  PubMed  Google Scholar 

  13. Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell. 2000;101(4):413–24.

    Article  CAS  PubMed  Google Scholar 

  14. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–34.

    Article  CAS  PubMed  Google Scholar 

  15. Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287(34):29134–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. •• Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66 This review provides a comprehensive assessment of the genetics and molecular biology of the FGF signaling pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myers JM, Martins GG, Ostrowski J, Stachowiak MK. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J Cell Biochem. 2003;88(6):1273–91.

    Article  CAS  PubMed  Google Scholar 

  18. Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 2006;281(37):27292–305.

    Article  CAS  PubMed  Google Scholar 

  20. Maher PA. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol. 1996;134(2):529–36.

    Article  CAS  PubMed  Google Scholar 

  21. Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK. Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res. 1996;38(1):161–5.

    Article  CAS  PubMed  Google Scholar 

  22. Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol. 2001;152(6):1307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chioni AM, Grose R. FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. J Cell Biol. 2012;197(6):801–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Mikolajczak M, Goodman T, Hajihosseini MK. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J. 2016;473(24):4593–607 Numerous mutations within FGFRs are causative for skeletal defects. This manuscript however identified mutations within the FGF10 ligand that fail to properly localize to the nucleus.

    Article  CAS  PubMed  Google Scholar 

  25. Wesche J, Małecki J̧, Wiȩdłocha A, Ehsani M, Marcinkowska E, Nilsen T, et al. Two nuclear localization signals required for transport from the cytosol to the nucleus of externally added FGF-1 translocated into cells. Biochemistry. 2005;44(16):6071–80.

    Article  CAS  PubMed  Google Scholar 

  26. Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell. 1999;10(5):1429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19(1):505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32(3):263–7.

    Article  CAS  PubMed  Google Scholar 

  29. Sorensen V, Nilsen T, Wiedlocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays. 2006;28(5):504–14.

    Article  PubMed  CAS  Google Scholar 

  30. Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol. 2005;25(21):9419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell. 2005;16(1):14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Citores L, Khnykin D, Sørensen V, Wesche J, Klingenberg O, Wiedłocha A, et al. Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci. 2001;114(Pt 9):1677–89.

    CAS  PubMed  Google Scholar 

  33. Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013;126(Pt 2):613–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S, Sandvig K, et al. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling. PLoS One. 2011;6(7):e21708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reilly JF, Mizukoshi E, Maher PA. Ligand dependent and independent internalization and nuclear translocation of fibroblast growth factor (FGF) receptor 1. DNA Cell Biol. 2004;23(9):538–48.

    Article  CAS  PubMed  Google Scholar 

  36. Malecki J, et al. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1. EMBO J. 2002;21(17):4480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.

    PubMed  PubMed Central  Google Scholar 

  38. •• Stehbens SJ, et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci. 2018;131(15). In endometrial cancer, activating somatic mutations in FGFR2 induce Golgi fragmentation, lose cell polarity, and migrate cells aberrantly. These outcomes are prognostic for endometrial cancer and correlate with shorter survival.

  39. Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, et al. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol. 2013;139(1):135–48.

    Article  CAS  PubMed  Google Scholar 

  40. Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, et al. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Hum Mol Genet. 2014;23(21):5659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell. 2011;22(20):3861–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res. 2016;6(4):827–42.

    PubMed  PubMed Central  Google Scholar 

  43. Carpenter G, Liao HJ. Receptor tyrosine kinases in the nucleus. Cold Spring Harb Perspect Biol. 2013;5(10):a008979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. • Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, et al. Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS One. 2015;10(4):e0123380 Using genome-wide sequencing, the study revealed a mechanism for gene regulation of nuclear FGFR1 to ensure that pluripotent ESCs differentiate into neuronal cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A. 2005;102(28):9896–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Neben CL, et al. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet. 2017;26(17):3253–70 This study linked cell fate determination to disease pathology by characterizing FGFR2 mutations in BBDS and established rDNA as an FGFR2-regulated loci that balances self-renewal and cell fate determination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene. 2017;612:29–35.

    Article  CAS  PubMed  Google Scholar 

  48. Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16(2):233–47.

    Article  CAS  PubMed  Google Scholar 

  49. Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem. 2003;90(4):662–91.

    Article  CAS  PubMed  Google Scholar 

  50. Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem. 2002;80(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  51. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. FGF9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627–36.

    Article  CAS  PubMed  Google Scholar 

  52. Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104(42):16558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132(6):1223–34.

    Article  CAS  PubMed  Google Scholar 

  54. Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.

    CAS  PubMed  Google Scholar 

  56. De Moerlooze L, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.

    PubMed  Google Scholar 

  57. Krakow D, Cohn DH, Wilcox WR, Noh GJ, Raffel LJ, Sarukhanov A, et al. Clinical and radiographic delineation of bent bone dysplasia-FGFR2 type or bent bone dysplasia with distinctive clavicles and angel-shaped phalanges. Am J Med Genet A. 2016;170(10):2652–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn. 2019;248:233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.

    Article  CAS  PubMed  Google Scholar 

  60. Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet. 2004;13(19):2313–24.

    Article  CAS  PubMed  Google Scholar 

  61. Robertson SC, Meyer AN, Hart KC, Galvin BD, Webster MK, Donoghue DJ. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc Natl Acad Sci U S A. 1998;95(8):4567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med. 2014;6(4):467–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pollock PM, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10.

    Article  CAS  PubMed  Google Scholar 

  65. Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes. 2011;4:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cerliani JP, Vanzulli SI, Piñero CP, Bottino MC, Sahores A, Nuñez M, et al. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat. 2012;133(3):997–1008.

    Article  CAS  PubMed  Google Scholar 

  67. Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, et al. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol. 2012;105(8):773–9.

    Article  CAS  PubMed  Google Scholar 

  68. • May M, Mosto J, Vazquez PM, Gonzalez P, Rojas P, Gass H, et al. Nuclear staining of FGFR-2/STAT-5 and RUNX-2 in mucinous breast cancer. Exp Mol Pathol. 2016;100(1):39–44 Mucinous breast carcinoma (MBC) is a rare subtype of breast cancer. When compared to non-MBC, higher expression of nuclear FGFR2 and RUNX2 was observed in MBC suggesting a role for these proteins in the progression of the mucinous phenotype.

    Article  CAS  PubMed  Google Scholar 

  69. Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, et al. Altered intracellular localization of fibroblast growth factor receptor 3 in human breast cancer. J Pathol. 2001;194(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  70. Rotterud R, Fossa SD, Nesland JM. Protein networking in bladder cancer: immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol Histopathol. 2007;22(4):349–63.

    CAS  PubMed  Google Scholar 

  71. • Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, et al. Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. Int J Clin Exp Pathol. 2015;8(11):14640–8 This study suggests that the nuclear translocation of FGFR3 not only is frequent but also prognostic for pancreatic cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank all the members of the Merrill laboratory for insightful discussions and, in particular, Lauren Bobzin for her critical review of this manuscript.

Funding

This work was supported by the National Institutes of Health R01DE025222 to A.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Merrill.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Right and Informed Consent

This article does not present any primary studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuzon, C.T., Rigueur, D. & Merrill, A.E. Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease. Curr Osteoporos Rep 17, 138–146 (2019). https://doi.org/10.1007/s11914-019-00512-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-019-00512-2

Keywords

Navigation