Skip to main content

Advertisement

Log in

Crosstalk Between Sensory Nerves and Cancer in Bone

  • Cancer-induced Musculoskeletal Diseases (J Sterling and E Keller, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sensory nerves (SNs) richly innervate bone and are a component of bone microenvironment. Cancer metastasis in bone, which is under the control of the crosstalk with bone microenvironment, induces bone pain via excitation of SNs innervating bone. However, little is known whether excited SNs in turn affect bone metastasis.

Recent Findings

Cancer cells colonizing bone promote neo-neurogenesis of SNs and excite SNs via activation of the acid-sensing nociceptors by creating pathological acidosis in bone, evoking bone pain. Denervation of SNs or inhibition of SN excitation decreases bone pain and cancer progression and increases survival in preclinical models. Importantly, patients with cancers with increased SN innervation complain of cancer pain and show poor outcome.

Summary

SNs establish the crosstalk with cancer cells to contribute to bone pain and cancer progression in bone. Blockade of SN excitation may have not only analgesic effects on bone pain but also anti-cancer actions on bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93. https://doi.org/10.1038/nrc867.

    Article  CAS  PubMed  Google Scholar 

  2. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64. https://doi.org/10.1056/NEJMra030831.

    Article  CAS  PubMed  Google Scholar 

  3. Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005;328:679–87. https://doi.org/10.1016/j.bbrc.2004.11.070.

    Article  CAS  PubMed  Google Scholar 

  4. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11:411–25. https://doi.org/10.1038/nrc3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson RW, Suva LJ. Hallmarks of bone metastasis. Calcif Tissue Int. 2017;102:141–51. https://doi.org/10.1007/s00223-017-0362-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooper RR. Nerves in cortical bone. Science. 1968;160:327–8.

    Article  CAS  Google Scholar 

  7. Calvo W, Forteza-Vila J. On the development of bone marrow innervation in new-born rats as studied with silver impregnation and electron microscopy. Am J Anat. 1969;126:355–71. https://doi.org/10.1002/aja.1001260308.

    Article  CAS  PubMed  Google Scholar 

  8. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113:155–66.

    Article  CAS  Google Scholar 

  9. Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone. 1999;25:623–9.

    Article  CAS  Google Scholar 

  10. Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res Tech. 2002;58:85–90. https://doi.org/10.1002/jemt.10122.

    Article  CAS  PubMed  Google Scholar 

  11. Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci. 2006;7:797–809. https://doi.org/10.1038/nrn1914.

    Article  CAS  PubMed  Google Scholar 

  12. Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39:508–19. https://doi.org/10.1111/ejn.12462.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Falk S, Dickenson AH. Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol. 2014;32:1647–54. https://doi.org/10.1200/JCO.2013.51.7219.

    Article  CAS  PubMed  Google Scholar 

  14. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11:695–707. https://doi.org/10.1038/nrc3131.

    Article  CAS  PubMed  Google Scholar 

  15. Jobling P, Pundavela J, Oliveira SM, Roselli S, Walker MM, Hondermarck H. Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res. 2015;75:1777–81. https://doi.org/10.1158/0008-5472.

    Article  PubMed  Google Scholar 

  16. • Hiasa M, Okui T, Allette YM, et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Res. 2017;77:1283–95. https://doi.org/10.1158/0008-5472 This paper shows that H + released by multiple myeloma cells induces CABP via activation of the acid-sensing nociceptor ASIC3 in mice.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Wakabayashi H, Wakisaka S, Hiraga T, et al. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J Bone Miner Metab. 2018;36:274–85. https://doi.org/10.1007/s00774-017-0842-7 This paper describes that genetic deletion of the acid-sensing nociceptor TRPV1 reduces CABP associated with Lewis lung cancer.

    Article  CAS  PubMed  Google Scholar 

  18. Cleeland CS, Body JJ, Stopeck A, von Moos R, Fallowfield L, Mathias SD, et al. Pain outcomes in patients with advanced breast cancer and bone metastases: results from a randomized, double-blind study of denosumab and zoledronic acid. Cancer. 2013;119:832–8. https://doi.org/10.1002/cncr.27789.

    Article  CAS  PubMed  Google Scholar 

  19. von Moos R, Costa L, Ripamonti CI, Niepel D, Santini D. Improving quality of life in patients with advanced cancer: targeting metastatic bone pain. Eur J Cancer. 2017;71:80–94. https://doi.org/10.1016/j.ejca.2016.10.021.

    Article  Google Scholar 

  20. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497:490–3. https://doi.org/10.1038/nature12115.

    Article  CAS  PubMed  Google Scholar 

  21. Heffner MA, Anderson MJ, Yeh GC, Genetos DC, Christiansen BA. Altered bone development in a mouse model of peripheral sensory nerve inactivation. J Musculoskelet Neuronal Interact. 2014;14:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding Y, Arai M, Kondo H, Togari A. Effects of capsaicin-induced sensory denervation on bone metabolism in adult rats. Bone. 2010;46:1591–6. https://doi.org/10.1016/j.bone.2010.02.022.

    Article  CAS  PubMed  Google Scholar 

  23. Alves CJ, Alencastre IS, Neto E, Ribas J, Ferreira S, Vasconcelos DM, et al. Bone injury and repair trigger central and peripheral NPY neuronal pathways. PLoS One. 2016;11:e0165465. https://doi.org/10.1371/journal.pone.0165465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burt-Pichat B, Lafage-Proust MH, Duboeuf F, Laroche N, Itzstein C, Vico L, et al. Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology. 2005;146:503–10. https://doi.org/10.1210/en.2004-0884.

    Article  CAS  PubMed  Google Scholar 

  25. Nencini S, Ivanusic JJ. The physiology of bone pain. How much do we really know? Front Physiol. 2016;7:157. https://doi.org/10.3389/fphys.2016.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  26. •• Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain. 1997;69:1–18 One of the earliest papers that describe and discuss about CABP.

    Article  CAS  Google Scholar 

  27. Mantyh WG, Jimenez-Andrade JM, Stake JI, Bloom AP, Kaczmarska MJ, Taylor RN, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010;171:588–98. https://doi.org/10.1016/j.neuroscience.2010.08.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lozano-Ondoua AN, Symons-Liguori AM, Vanderah TW. Cancer-induced bone pain: mechanisms and models. Neurosci Lett. 2013;557(Pt A):52–9. https://doi.org/10.1016/j.neulet.2013.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krames ES. The dorsal root ganglion in chronic pain and as a target for neuromodulation: a review. Neuromodulation. 2015;18:24–32; discussion. https://doi.org/10.1111/ner.12247.

    Article  PubMed  Google Scholar 

  31. Abdelhamid RE, Sluka KA. ASICs mediate pain and inflammation in musculoskeletal diseases. Physiology (Bethesda, Md). 2015;30:449–59. https://doi.org/10.1152/physiol.00030.2015.

    Article  CAS  Google Scholar 

  32. Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012;8:358–66. https://doi.org/10.1038/nrrheum.2012.36.

    Article  CAS  PubMed  Google Scholar 

  33. Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9:285–96. https://doi.org/10.1038/nrm2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10:767–77. https://doi.org/10.1038/nrd3554.

    Article  CAS  PubMed  Google Scholar 

  35. Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13:611–23. https://doi.org/10.1038/nrc3579.

    Article  CAS  PubMed  Google Scholar 

  36. • Devignes CS, Aslan Y, Brenot A, et al. HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proc Natl Acad Sci U S A. 2018;115:E992–e1001. https://doi.org/10.1073/pnas.1718009115 This paper shows that HIF in osteoblasts systemically modulates breast cancer progression via increasing CXCL12 secretion by osteoblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Pompo G, Lemma S, Canti L, et al. Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma. Oncotarget. 2017;8:54478–96. https://doi.org/10.18632/oncotarget.17091.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Terpos E, Christoulas D, Gavriatopoulou M. Biology and treatment of myeloma related bone disease. Metabolism. 2017;80:80–90. https://doi.org/10.1016/j.metabol.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  39. Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44:1422–35. https://doi.org/10.1016/j.biocel.2012.05.014.

    Article  CAS  PubMed  Google Scholar 

  40. Maeda H, Kowada T, Kikuta J, Furuya M, Shirazaki M, Mizukami S, et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat Chem Biol. 2016;12:579–85. https://doi.org/10.1038/nchembio.2096.

    Article  CAS  PubMed  Google Scholar 

  41. Holzer P. Acid sensing by visceral afferent neurones. Acta Physiol (Oxford). 2011;201:63–75. https://doi.org/10.1111/j.1748-1716.2010.02143.x.

    Article  CAS  Google Scholar 

  42. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–13.

    Article  CAS  Google Scholar 

  43. Ghilardi JR, Rohrich H, Lindsay TH, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci. 2005;25:3126–31. https://doi.org/10.1523/jneurosci.3815-04.2005.

    Article  CAS  PubMed  Google Scholar 

  44. Niiyama Y, Kawamata T, Yamamoto J, Omote K, Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons. Neuroscience. 2007;148:560–72. https://doi.org/10.1016/j.neuroscience.2007.05.049.

    Article  CAS  PubMed  Google Scholar 

  45. Niiyama Y, Kawamata T, Yamamoto J, Furuse S, Namiki A. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth. 2009;102:251–8. https://doi.org/10.1093/bja/aen347.

    Article  CAS  PubMed  Google Scholar 

  46. Xu Q, Zhang XM, Duan KZ, Gu XY, Han M, Liu BL, et al. Peripheral TGF-beta1 signaling is a critical event in bone cancer-induced hyperalgesia in rodents. J Neurosci. 2013;33:19099–111. https://doi.org/10.1523/jneurosci.4852-12.2013.

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Cai J, Han Y, Xiao X, Meng XL, Su L, et al. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain. Eur J Pain. 2014;18:774–84. https://doi.org/10.1002/j.1532-2149.2013.00420.x.

    Article  CAS  PubMed  Google Scholar 

  48. Fang D, Kong LY, Cai J, et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain. 2015;156:1124–44. https://doi.org/10.1097/j.pain.0000000000000158.

    Article  CAS  PubMed  Google Scholar 

  49. Nagae M, Hiraga T, Wakabayashi H, Wang L, Iwata K, Yoneda T. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone. 2006;39:1107–15. https://doi.org/10.1016/j.bone.2006.04.033.

    Article  CAS  PubMed  Google Scholar 

  50. Shepherd AJ, Mickle AD, Kadunganattil S, Hu H, Mohapatra DP. Parathyroid hormone-related peptide elicits peripheral TRPV1-dependent mechanical hypersensitivity. Front Cell Neurosci. 2018;12:38. https://doi.org/10.3389/fncel.2018.00038.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature. 2005;436:193–200. https://doi.org/10.1038/nature03875.

    Article  CAS  PubMed  Google Scholar 

  52. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell. 2002;109:693–705.

    Article  CAS  Google Scholar 

  53. Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron. 2011;71:406–24. https://doi.org/10.1016/j.neuron.2011.07.013.

    Article  CAS  PubMed  Google Scholar 

  54. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  Google Scholar 

  55. Hanoun M, Maryanovich M, Arnal-Estape A, Frenette PS. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron. 2015;86:360–73. https://doi.org/10.1016/j.neuron.2015.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saloman JL, Albers KM, Rhim AD, Davis BM. Can stopping nerves, stop cancer? Trends Neurosci. 2016;39:880–9. https://doi.org/10.1016/j.tins.2016.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15:563–72. https://doi.org/10.1038/nrc3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010;21:77–82. https://doi.org/10.1016/j.cytogfr.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  59. • Elefteriou F. Role of sympathetic nerves in the establishment of metastatic breast cancer cells in bone. J Bone Oncol. 2016;5:132–4. https://doi.org/10.1016/j.jbo.2016.03.003 This is a concise review on the role of sympathetic nerves in bone metastasis of breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zong JC, Wang X, Zhou X, et al. Gut-derived serotonin induced by depression promotes breast cancer bone metastasis through the RUNX2/PTHrP/RANKL pathway in mice. Oncol Rep. 2016;35:739–48. https://doi.org/10.3892/or.2015.4430.

    Article  CAS  PubMed  Google Scholar 

  61. •• Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361. https://doi.org/10.1126/science.1236361 A pioneering paper that first shows the critical role of autonomic nerves in prostate cancer progression and metastases in preclinical models.

    Article  PubMed  Google Scholar 

  62. • Zhao CM, Hayakawa Y, Kodama Y, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6:250ra115. https://doi.org/10.1126/scitranslmed.3009569 This paper proposes that denervation is a potential therpaeutic approach for gastric cancer in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Saloman JL, Albers KM, Li D, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A. 2016;113:3078–83. https://doi.org/10.1073/pnas.1512603113 A pioneering paper first showing the results that sensory nerves play a role in the progression of pacreatic cancer using genetically-modified mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Li J, Sun Y, Ding G, Jiang F. Persistent pain accelerates xenograft tumor growth of breast cancer in rat. Biochem Biophys Res Commun. 2018;495:2432–8. https://doi.org/10.1016/j.bbrc.2017.12.121 This paper describes the effects of pain on tumor growth.

    Article  CAS  PubMed  Google Scholar 

  65. Jung WC, Levesque JP, Ruitenberg MJ. It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Semin Cell Dev Biol. 2017;61:60–70. https://doi.org/10.1016/j.semcdb.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  66. Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiol Rev. 2018;98:1083–112. https://doi.org/10.1152/physrev.00014.2017.

    Article  PubMed  Google Scholar 

  67. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, et al. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol. 2012;10:e1001363. https://doi.org/10.1371/journal.pbio.1001363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Mulcrone PL, Campbell JP, Clement-Demange L, et al. Skeletal colonization by breast cancer cells is stimulated by an osteoblast and beta2AR-dependent neo-angiogenic switch. J Bone Miner Res. 2017;32:1442–54. https://doi.org/10.1002/jbmr.3133 This paper shows that beta2-adrenergic receptors in osteoblasts stimulate bone metastases of breast cancer via promotion of neoangiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jimenez-Andrade JM, Ghilardi JR, Castaneda-Corral G, Kuskowski MA, Mantyh PW. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152:2564–74. https://doi.org/10.1016/j.pain.2011.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McCaffrey G, Thompson ML, Majuta L, Fealk MN, Chartier S, Longo G, et al. NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use. Cancer Res. 2014;74:7014–23. https://doi.org/10.1158/0008-5472.can-14-1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Halabi S, Vogelzang NJ, Kornblith AB, Ou SS, Kantoff PW, Dawson NA, et al. Pain predicts overall survival in men with metastatic castration-refractory prostate cancer. J Clin Oncol. 2008;26:2544–9. https://doi.org/10.1200/jco.2007.15.0367.

    Article  PubMed  Google Scholar 

  72. • Saad F, Carles J, Gillessen S, et al. Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol. 2016;17:1306–16. https://doi.org/10.1016/s1470-2045(16)30173-5 A clinical paper that shows a correlation between the degree of CABP and survicval in patients with castration-resisitant prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  73. Mancino M, Ametller E, Gascon P, Almendro V. The neuronal influence on tumor progression. Biochim Biophys Acta. 2011;1816:105–18. https://doi.org/10.1016/j.bbcan.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  74. Patel MK, Kaye AD, Urman RD. Tanezumab: therapy targeting nerve growth factor in pain pathogenesis. J Anaesthesiol Clin Pharmacol. 2018;34:111–6. https://doi.org/10.4103/joacp.JOACP_389_15.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ozsvari B, Lamb R, Lisanti MP. Repurposing of FDA-approved drugs against cancer - focus on metastasis. Aging. 2016;8:567–8. https://doi.org/10.18632/aging.100941.

    Article  PubMed  PubMed Central  Google Scholar 

  76. • Friedman JR, Nolan NA, Brown KC, et al. Anticancer activity of natural and synthetic capsaicin analogs. J Pharmacol Exp Ther. 2018;364:462–73. https://doi.org/10.1124/jpet.117.243691 A review paper describing the potential of capsaicin as an anti-cancer agent.

    Article  CAS  PubMed  Google Scholar 

  77. Farfariello V, Liberati S, Morelli MB, Tomassoni D, Santoni M, Nabissi M, et al. Resiniferatoxin induces death of bladder cancer cells associated with mitochondrial dysfunction and reduces tumor growth in a xenograft mouse model. Chem Int. 2014;224:128–35. https://doi.org/10.1016/j.cbi.2014.10.020.

    Article  CAS  Google Scholar 

  78. Eng JW, Reed CB, Kokolus KM, et al. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through beta2-adrenergic receptor activation. Nat Commun. 2015;6:6426. https://doi.org/10.1038/ncomms7426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The studies described in this review were partly supported by the Project Development Team within the ICTSI NIH/NCRR (#TR000006), start-up fund of Indiana University School of Medicine and Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (#17H04377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yoneda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, T., Hiasa, M. & Okui, T. Crosstalk Between Sensory Nerves and Cancer in Bone. Curr Osteoporos Rep 16, 648–656 (2018). https://doi.org/10.1007/s11914-018-0489-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0489-x

Keywords

Navigation