Skip to main content

Advertisement

Log in

Food Versus Pharmacy: Assessment of Nutritional and Pharmacological Strategies to Improve Bone Health in Energy-Deficient Exercising Women

  • Nutrition, Exercise and Lifestyle in Osteoporosis (S Shapses and J Lappe, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The review aims to summarize our current knowledge surrounding treatment strategies aimed at recovery of bone mass in energy-deficient women suffering from the Female Athlete Triad.

Recent Findings

The independent and interactive contributions of energy status versus estrogen status on bone density, geometry, and strength have recently been reported, highlighting the importance of addressing both energy and estrogen in treatment strategies for bone health. This is supported by reports that have identified energy-related features (low body weight and BMI) and estrogen-related features (late age of menarche, oligo/amenorrhea) to be significant risk factors for low bone mineral density and bone stress injury in female athletes and exercising women.

Summary

Nutritional therapy is the recommended first line of treatment to recover bone mass in energy-deficient female athletes and exercising women. If nutritional therapy fails after 12 months or if fractures or significant worsening in BMD occurs, pharmacological therapy may be considered in the form of transdermal estradiol with cyclic oral progestin (not COC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int: J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2016;27(4):1281–386. doi:10.1007/s00198-015-3440-3.

    Article  CAS  Google Scholar 

  2. Golden NH, Abrams SA. Optimizing bone health in children and adolescents. Pediatrics. 2014;134(4):e1229–43. doi:10.1542/peds.2014-2173.

    Article  PubMed  Google Scholar 

  3. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39. doi:10.1002/jbmr.412.

    Article  PubMed  Google Scholar 

  4. •• De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, CA, May 2012, and 2nd international conference held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014;24(2):96–119. doi:10.1097/JSM.0000000000000085. This consensus statement, composed by an international, multidisciplinary team of scientists and clinicians comprising the Female Athlete Triad Coalition, is the only resource published to date that relies on current evidence-based knowledge to offer specific recommendations for the screening, diagnosis, and treatment, as well as detailed return to play guidelines for the Female Athlete Triad.

    PubMed  Google Scholar 

  5. •• De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289. doi:10.1136/bjsports-2013-093218. This consensus statement, composed by an international, multidisciplinary team of scientists and clinicians comprising the Female Athlete Triad Coalition, is the only resource published to date that relies on current evidence-based knowledge to offer specific recommendations for the screening, diagnosis, and treatment, as well as detailed return to play guidelines for the Female Athlete Triad.

    Article  PubMed  Google Scholar 

  6. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93(2):799–808. doi:10.1172/JCI117034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clarke BL, Khosla S. Physiology of bone loss. Radiol Clin N Am. 2010;48(3):483–95. doi:10.1016/j.rcl.2010.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94. doi:10.1359/JBMR.050304.

    Article  PubMed  Google Scholar 

  9. Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.

    Article  CAS  PubMed  Google Scholar 

  10. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82. doi:10.1249/mss.0b013e318149f111.

    Article  PubMed  Google Scholar 

  11. Wade GN, Schneider JE. Metabolic fuels and reproduction in female mammals. Neurosci Biobehav Rev. 1992;16(2):235–72.

    Article  CAS  PubMed  Google Scholar 

  12. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest. 2006;116(5):1186–94. doi:10.1172/JCI28550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drinkwater BL, Bruemner B, Chesnut CH 3rd. Menstrual history as a determinant of current bone density in young athletes. JAMA. 1990;263(4):545–8.

    Article  CAS  PubMed  Google Scholar 

  14. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7(4):311–5.

    Article  CAS  PubMed  Google Scholar 

  15. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril. 2003;80(2):398–404.

    Article  PubMed  Google Scholar 

  16. Drinkwater BL, Nilson K, Chesnut CH 3rd, Bremner WJ, Shainholtz S, Southworth MB. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311(5):277–81. doi:10.1056/NEJM198408023110501.

    Article  CAS  PubMed  Google Scholar 

  17. Cobb KL, Bachrach LK, Greendale G, Marcus R, Neer RM, Nieves J, et al. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc. 2003;35(5):711–9. doi:10.1249/01.MSS.0000064935.68277.E7.

    Article  PubMed  Google Scholar 

  18. Marcus R, Cann C, Madvig P, Minkoff J, Goddard M, Bayer M, et al. Menstrual function and bone mass in elite women distance runners. Endocrine and metabolic features. Ann Intern Med. 1985;102(2):158–63.

    Article  CAS  PubMed  Google Scholar 

  19. Myburgh KH, Bachrach LK, Lewis B, Kent K, Marcus R. Low bone mineral density at axial and appendicular sites in amenorrheic athletes. Med Sci Sports Exerc. 1993;25(11):1197–202.

    Article  CAS  PubMed  Google Scholar 

  20. Nichols JF, Rauh MJ, Barrack MT, Barkai HS. Bone mineral density in female high school athletes: interactions of menstrual function and type of mechanical loading. Bone. 2007;41(3):371–7. doi:10.1016/j.bone.2007.05.003.

    Article  PubMed  Google Scholar 

  21. Mallinson RJ, Williams NI, Hill BR, De Souza MJ. Body composition and reproductive function exert unique influences on indices of bone health in exercising women. Bone. 2013;56(1):91–100. doi:10.1016/j.bone.2013.05.008.

    Article  PubMed  Google Scholar 

  22. • Mallinson RJ, Williams NI, Gibbs JC, Koehler K, Allaway HC, Southmayd E, et al. Current and past menstrual status is an important determinant of femoral neck geometry in exercising women. Bone. 2016;88:101–12. doi:10.1016/j.bone.2016.01.030. Building upon the classic work of Dr. Drinkwater, this study described the cumulative effect of current and past menstrual irregularity on femoral neck geometry, highlighting the persistent and significant detriment of estrogen deficiency on bone strength estimates.

    Article  PubMed  Google Scholar 

  23. Ackerman KE, Pierce L, Guereca G, Slattery M, Lee H, Goldstein M, et al. Hip structural analysis in adolescent and young adult oligoamenorrheic and eumenorrheic athletes and nonathletes. J Clin Endocrinol Metab. 2013;98(4):1742–9. doi:10.1210/jc.2013-1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96(10):3123–33. doi:10.1210/jc.2011-1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ducher G, Eser P, Hill B, Bass S. History of amenorrhoea compromises some of the exercise-induced benefits in cortical and trabecular bone in the peripheral and axial skeleton: a study in retired elite gymnasts. Bone. 2009;45(4):760–7. doi:10.1016/j.bone.2009.06.021.

    Article  CAS  PubMed  Google Scholar 

  26. Beck TJ. Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007;5(2):49–55.

    Article  PubMed  Google Scholar 

  27. Beck TJ, Broy SB. Measurement of hip geometry-technical background. J Clin Densitom. 2015;18(3):331–7. doi:10.1016/j.jocd.2015.06.006.

    Article  PubMed  Google Scholar 

  28. Ackerman KE, Putman M, Guereca G, Taylor AP, Pierce L, Herzog DB, et al. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone. 2012;51(4):680–7. doi:10.1016/j.bone.2012.07.019.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chevalley T, Bonjour JP, van Rietbergen B, Rizzoli R, Ferrari S. Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J Clin Endocrinol Metab. 2012;97(11):4174–81. doi:10.1210/jc.2012-2561.

    Article  CAS  PubMed  Google Scholar 

  30. Ackerman KE, Cano Sokoloff N, Denm G, Clarke HM, Lee H, Misra M. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc. 2015;47(8):1577–86. doi:10.1249/MSS.0000000000000574.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wentz L, Liu PY, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30.

    Article  PubMed  Google Scholar 

  32. Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(2):211–7. doi:10.1177/036354659602400217.

    Article  CAS  PubMed  Google Scholar 

  33. • Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58. doi:10.1177/0363546513520295. This investigation uniquely described the effect of a single Triad risk factor and combinations of 2 and 3 Triad risk factors on the incidence of bone stress injuries in exercising adolescent girls and women, thereby informing evidence-based clinical assessment of injury risk in this population.

    Article  PubMed  Google Scholar 

  34. Kadel NJ, Teitz CC, Kronmal RA. Stress fractures in ballet dancers. Am J Sports Med. 1992;20(4):445–9. doi:10.1177/036354659202000414.

    Article  CAS  PubMed  Google Scholar 

  35. Warren MP, Brooks-Gunn J, Hamilton LH, Warren LF, Hamilton WG. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med. 1986;314(21):1348–53. doi:10.1056/NEJM198605223142104.

    Article  CAS  PubMed  Google Scholar 

  36. Bennell KL, Malcolm SA, Thomas SA, Ebeling PR, McCrory PR, Wark JD, et al. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin J Sport Med. 1995;5(4):229–35.

    Article  CAS  PubMed  Google Scholar 

  37. Carbon R, Sambrook PN, Deakin V, Fricker P, Eisman JA, Kelly P, et al. Bone density of elite female athletes with stress fractures. Med J Aust. 1990;153(7):373–6.

    CAS  PubMed  Google Scholar 

  38. Duckham RL, Peirce N, Meyer C, Summers GD, Cameron N, Brooke-Wavell K. Risk factors for stress fracture in female endurance athletes: a cross-sectional study. BMJ Open. 2012;2(6):e001920. https://doi.org/10.1136/bmjopen-2012-001920.

  39. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990;113(10):754–9.

    Article  CAS  PubMed  Google Scholar 

  40. Nattiv A, Kennedy G, Barrack MT, Abdelkerim A, Goolsby MA, Arends JC, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930–41. doi:10.1177/0363546513490645.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hergenroeder AC, Smith EO, Shypailo R, Jones LA, Klish WJ, Ellis K. Bone mineral changes in young women with hypothalamic amenorrhea treated with oral contraceptives, medroxyprogesterone, or placebo over 12 months. Am J Obstet Gynecol. 1997;176(5):1017–25.

    Article  CAS  PubMed  Google Scholar 

  42. Warren MP, Miller KK, Olson WH, Grinspoon SK, Friedman AJ. Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in women with hypothalamic amenorrhea and osteopenia: an open-label extension of a double-blind, placebo-controlled study. Contraception. 2005;72(3):206–11. doi:10.1016/j.contraception.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  43. Rickenlund A, Carlstrom K, Ekblom B, Brismar TB, Von Schoultz B, Hirschberg AL. Effects of oral contraceptives on body composition and physical performance in female athletes. J Clin Endocrinol Metab. 2004;89(9):4364–70. doi:10.1210/jc.2003-031334.

    Article  CAS  PubMed  Google Scholar 

  44. Grinspoon SK, Friedman AJ, Miller KK, Lippman J, Olson WH, Warren MP. Effects of a triphasic combination oral contraceptive containing norgestimate/ethinyl estradiol on biochemical markers of bone metabolism in young women with osteopenia secondary to hypothalamic amenorrhea. J Clin Endocrinol Metab. 2003;88(8):3651–6. doi:10.1210/jc.2003-030033.

    Article  CAS  PubMed  Google Scholar 

  45. Cobb KL, Bachrach LK, Sowers M, Nieves J, Greendale GA, Kent KK, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39(9):1464–73. doi:10.1249/mss.0b013e318074e532.

    Article  CAS  PubMed  Google Scholar 

  46. Cumming DC. Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Arch Intern Med. 1996;156(19):2193–5.

    Article  CAS  PubMed  Google Scholar 

  47. Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab. 1995;80(3):898–904. doi:10.1210/jcem.80.3.7883849.

    CAS  PubMed  Google Scholar 

  48. Carlson JL, Curtis M, Halpern-Felsher B. Clinician practices for the management of amenorrhea in the adolescent and young adult athlete. J Adolesc Health. 2007;40(4):362–5. doi:10.1016/j.jadohealth.2006.10.017.

    Article  PubMed  Google Scholar 

  49. De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43(1):140–8. doi:10.1016/j.bone.2008.03.013S8756-3282(08)00166-X.

    Article  PubMed  CAS  Google Scholar 

  50. • Southmayd EA, Mallinson RJ, Williams NI, Mallinson DJ, De Souza MJ. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women. Osteoporos Int. 2017;28(4):1365–76. doi:10.1007/s00198-016-3887-x. This is the first study to isolate the contribution of energy status versus estrogen status on volumetric bone mineral density, bone geometry, and estimated bone strength in exercising women with and without menstrual disturbances.

    Article  CAS  PubMed  Google Scholar 

  51. • Gibbs JC, Nattiv A, Barrack MT, Williams NI, Rauh MJ, Nichols JF, et al. Low bone density risk is higher in exercising women with multiple triad risk factors. Med Sci Sports Exerc. 2014;46(1):167–76. doi:10.1249/MSS.0b013e3182a03b8b. This investigation uniquely described the effect of a single Triad risk factor and a combination of 2 and 3 Triad risk factors on bone health, identifying specific energetic and menstrual factors that are associated with low bone mineral density in exercising adolescent girls and women.

    Article  PubMed  Google Scholar 

  52. Loucks AB. Energy availability and infertility. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):470–4. doi:10.1097/MED.0b013e3282f1cb6a.

    Article  PubMed  Google Scholar 

  53. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocr Metab. 2003;88(1):297–311. doi:10.1210/jc.2002-020369.

    Article  CAS  PubMed  Google Scholar 

  54. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84(1):37–46.

    CAS  PubMed  Google Scholar 

  55. Dueck CA, Matt KS, Manore MM, Skinner JS. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr. 1996;6(1):24–40.

    Article  CAS  PubMed  Google Scholar 

  56. Kopp-Woodroffe SA, Manore MM, Dueck CA, Skinner JS, Matt KS. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr. 1999;9(1):70–88.

    Article  CAS  PubMed  Google Scholar 

  57. Mallinson RJ, Williams NI, Olmsted MP, Scheid JL, Riddle ES, De Souza MJ. A case report of recovery of menstrual function following a nutritional intervention in two exercising women with amenorrhea of varying duration. J Int Soc Sports Nutr. 2013;10:34. doi:10.1186/1550-2783-10-34.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40. doi:10.1359/JBMR.040410.

    Article  PubMed  Google Scholar 

  59. Miller KK, Lee EE, Lawson EA, Misra M, Minihan J, Grinspoon SK, et al. Determinants of skeletal loss and recovery in anorexia nervosa. J Clin Endocrinol Metab. 2006;91(8):2931–7. doi:10.1210/jc.2005-2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lindberg JS, Powell MR, Hunt MM, Ducey DE, Wade CE. Increased vertebral bone mineral in response to reduced exercise in amenorrheic runners. West J Med. 1987;146(1):39–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cialdella-Kam L, Guebels CP, Maddalozzo GF, Manore MM. Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients. 2014;6(8):3018–39. doi:10.3390/nu6083018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Arends JC, Cheung MY, Barrack MT, Nattiv A. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab. 2012;22(2):98–108.

    Article  CAS  PubMed  Google Scholar 

  63. Arimura C, Nozaki T, Takakura S, Kawai K, Takii M, Sudo N, et al. Predictors of menstrual resumption by patients with anorexia nervosa. Eat Weight Disord. 2010;15(4):e226–33. doi:10.3275/7039.

    CAS  PubMed  Google Scholar 

  64. Cominato L, da Silva MM, Steinmetz L, Pinzon V, Fleitlich-Bilyk B, Damiani D. Menstrual cycle recovery in patients with anorexia nervosa: the importance of insulin-like growth factor 1. Horm Res Paediatr. 2014;82(5):319–23. doi:10.1159/000367895.

    Article  CAS  PubMed  Google Scholar 

  65. Dempfle A, Herpertz-Dahlmann B, Timmesfeld N, Schwarte R, Egberts KM, Pfeiffer E, et al. Predictors of the resumption of menses in adolescent anorexia nervosa. BMC Psychiatry. 2013;13:308. doi:10.1186/1471-244X-13-308.

    Article  PubMed  PubMed Central  Google Scholar 

  66. El Ghoch M, Calugi S, Chignola E, Bazzani PV, Dalle Grave R. Body fat and menstrual resumption in adult females with anorexia nervosa: a 1-year longitudinal study. J Hum Nutr Diet. 2016;29(5):662–6. doi:10.1111/jhn.12373.

    Article  PubMed  Google Scholar 

  67. Golden NH, Jacobson MS, Schebendach J, Solanto MV, Hertz SM, Shenker IR. Resumption of menses in anorexia nervosa. Arch Pediatr Adolesc Med. 1997;151(1):16–21.

    Article  CAS  PubMed  Google Scholar 

  68. Misra M, Prabhakaran R, Miller KK, Goldstein MA, Mickley D, Clauss L, et al. Weight gain and restoration of menses as predictors of bone mineral density change in adolescent girls with anorexia nervosa-1. J Clin Endocrinol Metab. 2008;93(4):1231–7. doi:10.1210/jc.2007-1434.

    Article  CAS  PubMed  Google Scholar 

  69. Pitts S, Blood E, Divasta A, Gordon CM. Percentage body fat by dual-energy X-ray absorptiometry is associated with menstrual recovery in adolescents with anorexia nervosa. J Adolesc Health. 2014;54(6):739–41. doi:10.1016/j.jadohealth.2013.12.033.

    Article  PubMed  PubMed Central  Google Scholar 

  70. van Elburg AA, Eijkemans MJ, Kas MJ, Themmen AP, de Jong FH, van Engeland H, et al. Predictors of recovery of ovarian function during weight gain in anorexia nervosa. Fertil Steril. 2007;87(4):902–8. doi:10.1016/j.fertnstert.2006.11.004.

    Article  PubMed  Google Scholar 

  71. • Gordon CM, Ackerman KE, Berga SL, Kaplan JR, Mastorakos G, Misra M, et al. Functional hypothalamic amenorrhea: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2017; doi:10.1210/jc.2017-00131. These evidence-based clinical practice guidelines were recently published by the Endocrine Society and comprehensively summarize the current recommendations for the evaluation, diagnosis, and treatment of functional hypothalamic amenorrhea.

  72. Falsetti L, Gambera A, Barbetti L, Specchia C. Long-term follow-up of functional hypothalamic amenorrhea and prognostic factors. J Clin Endocrinol Metab. 2002;87(2):500–5. doi:10.1210/jcem.87.2.8195.

    Article  CAS  PubMed  Google Scholar 

  73. Faust JP, Goldschmidt AB, Anderson KE, Glunz C, Brown M, Loeb KL, et al. Resumption of menses in anorexia nervosa during a course of family-based treatment. J Eat Disord. 2013;1:12. doi:10.1186/2050-2974-1-12.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Abbate Daga G, Campisi S, Marzola E, Rocca G, Peris C, Campagnoli C, et al. Amenorrhea in eating disorders: poor stability of symptom after a one-year treatment. Eat Weight Disord. 2012;17(2):e78–85. doi:10.3275/7962.

    CAS  PubMed  Google Scholar 

  75. Dei M, Seravalli V, Bruni V, Balzi D, Pasqua A. Predictors of recovery of ovarian function after weight gain in subjects with amenorrhea related to restrictive eating disorders. Gynecol Endocrinol. 2008;24(8):459–64. doi:10.1080/09513590802246141.

    Article  CAS  PubMed  Google Scholar 

  76. Favaro A, Santonastaso P. Seasonality and the prediction of weight at resumption of menses in anorexia nervosa. Fertil Steril. 2009;91(4 Suppl):1395–7. doi:10.1016/j.fertnstert.2008.04.055.

    Article  PubMed  Google Scholar 

  77. Rigaud D, Pennacchio H, Bizeul C, Reveillard V, Verges B. Outcome in AN adult patients: a 13-year follow-up in 484 patients. Diabetes Metab. 2011;37(4):305–11. doi:10.1016/j.diabet.2010.11.020.

    Article  CAS  PubMed  Google Scholar 

  78. Drinkwater BL, Nilson K, Ott S, Chesnut CH 3rd. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA. 1986;256(3):380–2.

    Article  CAS  PubMed  Google Scholar 

  79. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG. Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab. 2002;87(7):3162–8. doi:10.1210/jcem.87.7.8637.

    Article  CAS  PubMed  Google Scholar 

  80. Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW Jr, Lentle BC. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom. 2005;8(4):371–8.

    Article  PubMed  Google Scholar 

  81. Allaway HC, Williams NI, Mallinson RJ, Koehler K, De Souza MJ. Reductions in urinary collection frequency for assessment of reproductive hormones provide physiologically representative exposure and mean concentrations when compared with daily collection. Am J Hum Biol. 2015;27(3):358–71. doi:10.1002/ajhb.22649.

    Article  PubMed  Google Scholar 

  82. Ross AC. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. 2011;14(5):938–9. doi:10.1017/S1368980011000565.

    Article  PubMed  Google Scholar 

  83. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. doi:10.1210/jc.2011-0385.

    Article  CAS  PubMed  Google Scholar 

  84. Winters-Stone KM, Snow CM. One year of oral calcium supplementation maintains cortical bone density in young adult female distance runners. Int J Sport Nutr Exerc Metab. 2004;14(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  85. Gibson JH, Mitchell A, Reeve J, Harries MG. Treatment of reduced bone mineral density in athletic amenorrhea: a pilot study. Osteoporos Int. 1999;10(4):284–9. doi:10.1007/s001980050228.

    Article  CAS  PubMed  Google Scholar 

  86. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9. doi:10.1359/jbmr.080102.

    Article  CAS  PubMed  Google Scholar 

  87. Allaway HCM, Weaver CM, Petkus DL, Stone MS, Misra M, Martin M, et al. Oral and non-oral contraceptives decrease recombinant human GH-stimulated hepatic IGF-1 secretion in young women following two months of use. Orlando: ENDO; 2017.

    Google Scholar 

  88. Misra M, Katzman D, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8. doi:10.1002/jbmr.447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zofkova I. Pathophysiological and clinical importance of insulin-like growth factor-I with respect to bone metabolism. Physiol Res. 2003;52(6):657–79.

    CAS  PubMed  Google Scholar 

  90. Crane JL, Cao X. Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl). 2014;92(2):107–15. doi:10.1007/s00109-013-1084-3.

    Article  CAS  Google Scholar 

  91. Adami S, Zivelonghi A, Braga V, Fracassi E, Gatti D, Rossini M, et al. Insulin-like growth factor-1 is associated with bone formation markers, PTH and bone mineral density in healthy premenopausal women. Bone. 2010;46(1):244–7. doi:10.1016/j.bone.2009.10.011.

    Article  CAS  PubMed  Google Scholar 

  92. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29(5):535–59. doi:10.1210/er.2007-0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Savage MO. Insulin-like growth factors, nutrition and growth. World Rev Nutr Diet. 2013;106:52–9. doi:10.1159/000342577.

    Article  PubMed  Google Scholar 

  94. Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab. 1996;81(12):4301–9. doi:10.1210/jcem.81.12.8954031.

    CAS  PubMed  Google Scholar 

  95. Allaway HC, Southmayd EA, De Souza MJ. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa. Horm Mol Biol Clin Investig. 2016;25(2):91–119. doi:10.1515/hmbci-2015-0053.

    CAS  PubMed  Google Scholar 

  96. Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, et al. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008;121(6):1127–36. doi:10.1542/peds.2007-2392.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Genazzani AD, Petraglia F, Gastaldi M, Gamba O, Corazza F, D’Ambrogio G, et al. Growth hormone (GH)-releasing hormone-induced GH response in hypothalamic amenorrhea: evidence of altered central neuromodulation. Fertil Steril. 1996;65(5):935–8.

    Article  CAS  PubMed  Google Scholar 

  98. Russell M, Stark J, Nayak S, Miller KK, Herzog DB, Klibanski A, et al. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone. 2009;45(1):104–9. doi:10.1016/j.bone.2009.03.668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zanker CL, Swaine IL. The relationship between serum oestradiol concentration and energy balance in young women distance runners. Int J Sports Med. 1998;19(2):104–8. doi:10.1055/s-2007-971890.

    Article  CAS  PubMed  Google Scholar 

  100. Grinspoon SK, Baum HB, Peterson S, Klibanski A. Effects of rhIGF-I administration on bone turnover during short-term fasting. J Clin Invest. 1995;96(2):900–6. doi:10.1172/JCI118137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grinspoon S, Baum H, Lee K, Anderson E, Herzog D, Klibanski A. Effects of short-term recombinant human insulin-like growth factor I administration on bone turnover in osteopenic women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81(11):3864–70. doi:10.1210/jcem.81.11.8923830.

    CAS  PubMed  Google Scholar 

  102. Misra M, McGrane J, Miller KK, Goldstein MA, Ebrahimi S, Weigel T, et al. Effects of rhIGF-1 administration on surrogate markers of bone turnover in adolescents with anorexia nervosa. Bone. 2009;45(3):493–8. doi:10.1016/j.bone.2009.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87(6):2883–91. doi:10.1210/jcem.87.6.8574.

    Article  CAS  PubMed  Google Scholar 

  104. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–2. doi:10.1038/382250a0.

    Article  CAS  PubMed  Google Scholar 

  105. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71. doi:10.1038/35007534.

    CAS  PubMed  Google Scholar 

  106. Miller KK, Parulekar MS, Schoenfeld E, Anderson E, Hubbard J, Klibanski A, et al. Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake. J Clin Endocrinol Metab. 1998;83(7):2309–12. doi:10.1210/jcem.83.7.4975.

    CAS  PubMed  Google Scholar 

  107. Tataranni PA, Monroe MB, Dueck CA, Traub SA, Nicolson M, Manore MM, et al. Adiposity, plasma leptin concentration and reproductive function in active and sedentary females. Int J Obes Relat Metab Disord. 1997;21(9):818–21.

    Article  CAS  PubMed  Google Scholar 

  108. Kopp W, Blum WF, von Prittwitz S, Ziegler A, Lubbert H, Emons G, et al. Low leptin levels predict amenorrhea in underweight and eating disordered females. Mol Psychiatry. 1997;2(4):335–40.

    Article  CAS  PubMed  Google Scholar 

  109. Warren MP, Voussoughian F, Geer EB, Hyle EP, Adberg CL, Ramos RH. Functional hypothalamic amenorrhea: hypoleptinemia and disordered eating. J Clin Endocrinol Metab. 1999;84(3):873–7. doi:10.1210/jcem.84.3.5551.

    Article  CAS  PubMed  Google Scholar 

  110. Christo K, Cord J, Mendes N, Miller KK, Goldstein MA, Klibanski A, et al. Acylated ghrelin and leptin in adolescent athletes with amenorrhea, eumenorrheic athletes and controls: a cross-sectional study. Clin Endocrinol. 2008;69(4):628–33. doi:10.1111/j.1365-2265.2008.03237.x.

    Article  CAS  Google Scholar 

  111. Ackerman KE, Slusarz K, Guereca G, Pierce L, Slattery M, Mendes N, et al. Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am J Physiol Endocrinol Metab. 2012;302(7):E800–6. doi:10.1152/ajpendo.00598.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366(9479):74–85. doi:10.1016/S0140-6736(05)66830-4.

    Article  CAS  PubMed  Google Scholar 

  113. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301(4):E567–84. doi:10.1152/ajpendo.00315.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987–97. doi:10.1056/NEJMoa040388.

    Article  CAS  PubMed  Google Scholar 

  115. Chou SH, Chamberland JP, Liu X, Matarese G, Gao C, Stefanakis R, et al. Leptin is an effective treatment for hypothalamic amenorrhea. Proc Natl Acad Sci U S A. 2011;108(16):6585–90. doi:10.1073/pnas.1015674108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sienkiewicz E, Magkos F, Aronis KN, Brinkoetter M, Chamberland JP, Chou S, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism. 2011;60(9):1211–21. doi:10.1016/j.metabol.2011.05.016.

    Article  CAS  PubMed  Google Scholar 

  117. Holly J, Perks C. The role of insulin-like growth factor binding proteins. Neuroendocrinology. 2006;83(3–4):154–60. doi:10.1159/000095523.

    Article  CAS  PubMed  Google Scholar 

  118. Gatti R, De Palo EF, Antonelli G, Spinella P. IGF-I/IGFBP system: metabolism outline and physical exercise. J Endocrinol Investig. 2012;35(7):699–707. doi:10.3275/8456.

    CAS  Google Scholar 

  119. Karlsson R, Eden S, von Schoultz B. Altered growth hormone secretion during oral contraception. Gynecol Obstet Investig. 1990;30(4):234–8.

    Article  CAS  Google Scholar 

  120. Balogh A, Kauf E, Vollanth R, Graser G, Klinger G, Oettel M. Effects of two oral contraceptives on plasma levels of insulin-like growth factor I (IGF-I) and growth hormone (hGH). Contraception. 2000;62(5):259–69.

    Article  CAS  PubMed  Google Scholar 

  121. Jernstrom H, Deal C, Wilkin F, Chu W, Tao Y, Majeed N, et al. Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiol Biomark Prev. 2001;10(4):377–84.

    CAS  Google Scholar 

  122. Jernstrom H, Olsson H. Suppression of plasma insulin-like growth factor-1 levels in healthy, nulliparous, young women using low dose oral contraceptives. Gynecol Obstet Investig. 1994;38(4):261–5.

    Article  CAS  Google Scholar 

  123. Blackmore KM, Wong J, Knight JA. A cross-sectional study of different patterns of oral contraceptive use among premenopausal women and circulating IGF-1: implications for disease risk. BMC Womens Health. 2011;11:15. doi:10.1186/1472-6874-11-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Harel Z, Riggs S, Vaz R, Flanagan P, Harel D, Machan JT. Bone accretion in adolescents using the combined estrogen and progestin transdermal contraceptive method Ortho Evra: a pilot study. J Pediatr Adolesc Gynecol. 2010;23(1):23–31. doi:10.1016/j.jpag.2009.04.008.

    Article  PubMed  Google Scholar 

  125. • Southmayd EA, De Souza MJ. A summary of the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health. Growth Hormon IGF Res. 2017;32:2–13. doi:10.1016/j.ghir.2016.09.001. This review summarizes our current understanding of the impact of exogenous estrogen administration on the GH/IGF-1 axis and bone health outcomes in pre- and post-menopausal women.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jane De Souza.

Ethics declarations

Conflict of Interest

Emily Southmayd, Adelaide Hellmers, and Mary Jane De Souza declare no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Nutrition, Exercise, and Lifestyle in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Southmayd, E.A., Hellmers, A.C. & De Souza, M.J. Food Versus Pharmacy: Assessment of Nutritional and Pharmacological Strategies to Improve Bone Health in Energy-Deficient Exercising Women. Curr Osteoporos Rep 15, 459–472 (2017). https://doi.org/10.1007/s11914-017-0393-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0393-9

Keywords

Navigation