Skip to main content

Advertisement

Log in

Fibrous Dysplasia/McCune-Albright Syndrome: Clinical and Translational Perspectives

  • Epidemiology and Pathophysiology (J Cauley and B Dawson-Hughes, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Fibrous dysplasia (FD) is an uncommon and debilitating skeletal disorder resulting in fractures, deformity, functional impairment, and pain. It arises from post-zygotic somatic activating mutations in GNAS, in the cAMP-regulating transcript α-subunit, Gsα. Constitutive Gs signaling results in activation of adenylyl cyclase and dysregulated cAMP production. In the skeleton, this leads to the development of FD lesions with abnormal bone matrix, trabeculae, and collagen, produced by undifferentiated mesenchymal cells. FD may occur in isolation or in combination with extraskeletal manifestations, including hyperfunctioning endocrinopathies and café-au-lait macules, termed McCune-Albright syndrome (MAS). This review summarizes current clinical and translational perspectives in FD/MAS, with an emphasis on FD pathogenesis, natural history, pre-clinical and clinical investigation, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lichtenstein L. Polyostotic fibrous dysplasia. Arch Surg. 1938;36:874–98.

    Article  Google Scholar 

  2. Weinstein LS et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325(24):1688–95.

    Article  CAS  PubMed  Google Scholar 

  3. Turan S, Bastepe M. GNAS spectrum of disorders. Curr Osteoporos Rep. 2015;13(3):146–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348(6297):125–32.

    Article  CAS  PubMed  Google Scholar 

  5. Riminucci M. et al. Fibrous dysplasia as a stem cell disease. J Bone Miner Res, 2006. 21 Suppl 2: p. P125-31.

  6. Piersanti S et al. Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. J Bone Miner Res. 2010;25(5):1103–16.

    CAS  PubMed  Google Scholar 

  7. Happle R. The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet. 1986;29(4):321–4.

    Article  CAS  PubMed  Google Scholar 

  8. Endo M et al. Monozygotic twins discordant for the major signs of McCune-Albright syndrome. Am J Med Genet. 1991;41(2):216–20.

    Article  CAS  PubMed  Google Scholar 

  9. Lemli L. Fibrous dysplasia of bone. Report of female monozygotic twins with and without the McCune-Albright syndrome. J Pediatr. 1977;91(6):947–9.

    Article  CAS  PubMed  Google Scholar 

  10. Peleg R, Treister-Goltzman Y. Images in clinical medicine: McCune-Albright syndrome. J Clin Endocrinol Metab. 2014;99(4):1105–6.

    Article  CAS  PubMed  Google Scholar 

  11. Bianco P et al. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells. J Clin Invest. 1998;101(8):1737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riminucci M et al. The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gs alpha gene: site-specific patterns and recurrent histological hallmarks. J Pathol. 1999;187(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  13. Collins MT, Riminucci M, Bianco P. Fibrous dysplasia. In: Rosen C, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Washington, DC: American Society of Bone and Mineral Research: p. 2013: 786–793.

  14. Hart ES et al. Onset, progression, and plateau of skeletal lesions in fibrous dysplasia and the relationship to functional outcome. J Bone Miner Res. 2007;22(9):1468–74.

    Article  PubMed  Google Scholar 

  15. Ippolito E et al. Radiographic classification of coronal plane femoral deformities in polyostotic fibrous dysplasia. Clin Orthop Relat Res. 2014;472(5):1558–67.

    Article  PubMed  Google Scholar 

  16. Leet AI et al. Fracture incidence in polyostotic fibrous dysplasia and the McCune-Albright syndrome. J Bone Miner Res. 2004;19(4):571–7.

    Article  PubMed  Google Scholar 

  17. Leet AI et al. Fibrous dysplasia in the spine: prevalence of lesions and association with scoliosis. J Bone Joint Surg Am. 2004;86-A(3):531–7.

    PubMed  Google Scholar 

  18. Boyce AM, Collins MT. Fibrous Dysplasia/McCune-Albright Syndrome. In GeneReviews(R), Pagon RA, et al, Editors. 1993, University of Washington, Seattle: Seattle WA. This review contains specific diagnostic and treatment algorithms compiled from the highest quality evidenced-based literature and expert opinion currently available.

  19. Amit M et al. Surgery versus watchful waiting in patients with craniofacial fibrous dysplasia—a meta-analysis. PLoS One. 2011;6(9):e25179. This meta-analysis establishes that prophylactic optic nerve decompression is contraindicated in patients with FD involving the optic canals without evidence of objective vision loss.

  20. Frisch CD et al. Fibrous dysplasia of the temporal bone: a review of 66 cases. Laryngoscope. 2015;125(6):1438–43.

    Article  PubMed  Google Scholar 

  21. Collins MT, Singer FR, Eugster E. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia. Orphanet J Rare Dis. 2012;7 Suppl 1:S4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boyce AM et al. Characterization and management of testicular pathology in McCune-Albright syndrome. J Clin Endocrinol Metab. 2012;97(9):E1782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Celi FS et al. The role of type 1 and type 2 5′-deiodinase in the pathophysiology of the 3,5,3′-triiodothyronine toxicosis of McCune-Albright syndrome. J Clin Endocrinol Metab. 2008;93(6):2383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyce AM, Bhattacharyya N, Collins MT. Fibrous dysplasia and fibroblast growth factor-23 regulation. Curr Osteoporos Rep. 2013;11(2):65–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brown RJ, Kelly MH, Collins MT. Cushing syndrome in the McCune-Albright syndrome. J Clin Endocrinol Metab. 2010;95(4):1508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyce AM et al. Optic neuropathy in McCune-Albright syndrome: effects of early diagnosis and treatment of growth hormone excess. J Clin Endocrinol Metab. 2013;98(1):E126–34. This paper demonstrates that early diagnosis and treatment of growth hormone excess in FD/MAS prevents long-term craniofacial morbidity.

  27. Leet AI et al. The correlation of specific orthopaedic features of polyostotic fibrous dysplasia with functional outcome scores in children. J Bone Joint Surg Am. 2006;88(4):818–23.

    Article  PubMed  Google Scholar 

  28. Ruggieri P et al. Malignancies in fibrous dysplasia. Cancer. 1994;73(5):1411–24.

    Article  CAS  PubMed  Google Scholar 

  29. Collins MT et al. Thyroid carcinoma in the McCune-Albright syndrome: contributory role of activating Gs alpha mutations. J Clin Endocrinol Metab. 2003;88(9):4413–7.

    Article  CAS  PubMed  Google Scholar 

  30. Tanabeu Y et al. Breast cancer in a patient with McCune-Albright syndrome. Breast Cancer. 1998;5(2):175–8.

    Article  PubMed  Google Scholar 

  31. Huston TL, Simmons RM. Ductal carcinoma in situ in a 27-year-old woman with McCune-Albright syndrome. Breast J. 2004;10(5):440–2.

    Article  PubMed  Google Scholar 

  32. Wu J et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaujoux S et al. Hepatobiliary and pancreatic neoplasms in patients with McCune-Albright syndrome. J Clin Endocrinol Metab. 2014;99(1):E97–101.

    Article  PubMed  Google Scholar 

  34. Parvanescu A et al. Lessons from McCune-Albright syndrome-associated intraductal papillary mucinous neoplasms: GNAS-activating mutations in pancreatic carcinogenesis. JAMA Surg. 2014;149(8):858–62.

    Article  PubMed  Google Scholar 

  35. Riminucci M et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112(5):683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuznetsov SA et al. Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. J Bone Miner Res. 2008;23(11):1731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhattacharyya N et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res. 2012;27(5):1132–41.

    Article  CAS  PubMed  Google Scholar 

  38. Leet AI, Collins MT. Current approach to fibrous dysplasia of bone and McCune-Albright syndrome. J Child Orthop. 2007;1(1):3–17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paul SM et al. Disease severity and functional factors associated with walking performance in polyostotic fibrous dysplasia. Bone. 2014;60:41–7.

    Article  PubMed  Google Scholar 

  40. Leet AI et al. Bone-grafting in polyostotic fibrous dysplasia. J Bone Joint Surg Am. 2016;98(3):211–9. This study demonstrates that the common surgical practice of bone grafting is frequently ineffective in patients with FD, particularly children.

  41. Stanton RP, Ippolito E, Springfield D, Lindaman L, Wientroub S, Leet A. The surgical management of fibrous dysplasia of bone. Orphanet J Rare Dis. 2012;24 Suppl 1:S1.

    Article  Google Scholar 

  42. Mancini F et al. Scoliosis and spine involvement in fibrous dysplasia of bone. Eur Spine J. 2009;18(2):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gabbay JS et al. Fibrous dysplasia of the zygomaticomaxillary region: outcomes of surgical intervention. Plast Reconstr Surg. 2013;131(6):1329–38.

    Article  CAS  PubMed  Google Scholar 

  44. Lee J, Fitzgibbon E, Chen Y, Kim H, Lustig L, Akintoye S, Collins M, Kaban L. Clinical guidelines for the management of craniofacial fibrous dysplasia. 2012. 24 Suppl 1:S2(7): p. Suppl 1:S2.

  45. Lee JS et al. Normal vision despite narrowing of the optic canal in fibrous dysplasia. N Engl J Med. 2002;347(21):1670–6.

    Article  PubMed  Google Scholar 

  46. Boyce AM et al. A randomized, double blind, placebo-controlled trial of alendronate treatment for fibrous dysplasia of bone. J Clin Endocrinol Metab. 2014;99(11):4133–40. This study reports the first randomized controlled trial in FD, demonstrating that oral alendronate is ineffective in improving FD-related pain or the radiographic appearance of FD lesions.

  47. Chapurlat RD et al. Treatment of fibrous dysplasia of bone with intravenous pamidronate: long-term effectiveness and evaluation of predictors of response to treatment. Bone. 2004;35(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  48. Liens D, Delmas PD, Meunier PJ. Long-term effects of intravenous pamidronate in fibrous dysplasia of bone. Lancet. 1994;343(8903):953–4.

    Article  CAS  PubMed  Google Scholar 

  49. Plotkin H et al. Effect of pamidronate treatment in children with polyostotic fibrous dysplasia of bone. J Clin Endocrinol Metab. 2003;88(10):4569–75.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly MH, Brillante B, Collins MT. Pain in fibrous dysplasia of bone: age-related changes and the anatomical distribution of skeletal lesions. Osteoporos Int. 2008;19(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  51. Salenave S. et al. Acromegaly and McCune-Albright syndrome. J Clin Endocrinol Metab, 2014: p. jc20133826.

  52. Tessaris D et al. Thyroid abnormalities in children and adolescents with McCune-Albright syndrome. Horm Res Paediatr. 2012;78(3):151–7.

    Article  CAS  PubMed  Google Scholar 

  53. Hsiao EC et al. Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. Proc Natl Acad Sci U S A. 2008;105(4):1209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsiao EC et al. Gs G protein-coupled receptor signaling in osteoblasts elicits age-dependent effects on bone formation. J Bone Miner Res. 2010;25(3):584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saggio I et al. Constitutive expression of Gsalpha(R201C) in mice produces a heritable, direct replica of human fibrous dysplasia bone pathology and demonstrates its natural history. J Bone Miner Res. 2014;29(11):2357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bianco P et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kagami H et al. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation. Tissue Eng Part B Rev. 2014;20(3):229–32.

    Article  CAS  PubMed  Google Scholar 

  58. Robey PG et al. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration. Bone. 2015;70:87–92.

    Article  CAS  PubMed  Google Scholar 

  59. Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells. 2015;8(1):54–68.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bhattacharyya N et al. A high throughput screening assay system for the identification of small molecule inhibitors of gsp. PLoS One. 2014;9(3), e90766.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dempster DW et al. Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: a review of preclinical and clinical data. Clin Ther. 2012;34(3):521–36.

    Article  CAS  PubMed  Google Scholar 

  62. Prolia [package insert]. Thousand Oaks, CA., 2010. Amgen, Inc.

  63. Xgeva [package insert]. Thousand Oaks, CA., 2010. Amgen, Inc.

  64. Xu SF et al. Denosumab and giant cell tumour of bone—a review and future management considerations. Curr Oncol. 2013;20(5):e442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and role of denosumab. Biologics. 2015;9:69–74.

    PubMed  PubMed Central  Google Scholar 

  66. Thomas D et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  67. Wang HD et al. Effects of denosumab treatment and discontinuation on human growth plates. J Clin Endocrinol Metab. 2014;99(3):891–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Benhamou J, Gensburger D, Chapurlat R. Transient improvement of severe pain from fibrous dysplasia of bone with denosumab treatment. Joint Bone Spine. 2014;81(6):549–50.

    Article  PubMed  Google Scholar 

  69. Boyce AM et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res. 2012;27(7):1462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gossai N et al. Critical hypercalcemia following discontinuation of denosumab therapy for metastatic giant cell tumor of bone. Pediatr Blood Cancer. 2015;62(6):1078–80.

    Article  PubMed  Google Scholar 

  71. Grasemann C et al. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98(8):3121–6.

    Article  CAS  PubMed  Google Scholar 

  72. Setsu N et al. Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab. 2016;34(1):118–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Boyce.

Ethics declarations

Conflict of Interest

Cemre Robinson, Michael T Collins, and Alison M Boyce declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors.

With regard to the authors’ research cited in this paper, all institutional and national guidelines for the care and use of laboratory animals were followed.

Funding

This research was supported by the Intramural Research Program of the National Institute of Dental and Craniofacial Research

Additional information

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, C., Collins, M.T. & Boyce, A.M. Fibrous Dysplasia/McCune-Albright Syndrome: Clinical and Translational Perspectives. Curr Osteoporos Rep 14, 178–186 (2016). https://doi.org/10.1007/s11914-016-0317-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0317-0

Keywords

Navigation