Skip to main content
Log in

Pathophysiology of Vascular Calcification

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Vascular calcification can lead to cardiovascular morbidity and mortality. The initiating factors and clinical consequences depend on the underlying disease state and location of the calcification. The pathogenesis of vascular calcification is complex and involves a transformation of vascular smooth muscle cells to an osteo/chondrocytic cell that expresses RUNX2 and produces matrix vesicles. The imbalance of promoters (such as hyperphosphatemia and hypercalcemia) and inhibitors (e.g., fetuin-A) is critical in the development of vascular calcification. The altered mineral metabolism and deficiency in inhibitors are common in patients with chronic kidney disease (CKD) and is one reason why vascular calcification is so prevalent in that population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moe SM, Chen NX. Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2008;19(2):213–6. doi:10.1681/ASN.2007080854. This review highlights the important factors contributing to vascular calcification in CKD.

    Article  CAS  PubMed  Google Scholar 

  2. Ibanez B, Badimon JJ, Garcia MJ. Diagnosis of atherosclerosis by imaging. Am J Med. 2009;122(1 Suppl):S15–25. doi:10.1016/j.amjmed.2008.10.014.

    Article  PubMed  Google Scholar 

  3. Moe SM, Chen NX. Pathophysiology of vascular calcification in chronic kidney disease. Circ Res. 2004;95(6):560–7.

    Article  CAS  PubMed  Google Scholar 

  4. Proudfoot D, Shanahan CM, Weissberg PL. Vascular calcification: new insights into an old problem [editorial; comment]. J Pathol. 1998;185(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  5. Lehto S, Niskanen L, Suhonen M, Ronnemaa T, Laakso M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16(8):978–83.

    Article  CAS  PubMed  Google Scholar 

  6. London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731–40.

    Article  PubMed  Google Scholar 

  7. Chen NX, Moe SM. Vascular calcification: pathophysiology and risk factors. Curr Hypertens Rep. 2012;14(3):228–37. doi:10.1007/s11906-012-0265-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mehrotra R, Budoff M, Christenson P, Ipp E, Takasu J, Gupta A, et al. Determinants of coronary artery calcification in diabetics with and without nephropathy. Kidney Int. 2004;66(5):2022–31.

    Article  PubMed  Google Scholar 

  9. Mehrotra R, Budoff M, Hokanson JE, Ipp E, Takasu J, Adler S. Progression of coronary artery calcification in diabetics with and without chronic kidney disease. Kidney Int. 2005;68(3):1258–66.

    Article  PubMed  Google Scholar 

  10. Chertow GM, Raggi P, Chasan-Taber S, Bommer J, Holzer H, Burke SK. Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1489–96.

    Article  PubMed  CAS  Google Scholar 

  11. Orakzai SH, Nasir K, Blaha M, Blumenthal RS, Raggi P. Non-HDL cholesterol is strongly associated with coronary artery calcification in asymptomatic individuals. Atherosclerosis. 2009;202(1):289–95. doi:10.1016/j.atherosclerosis.2008.03.014.

    Article  CAS  PubMed  Google Scholar 

  12. Henein MY, Owen A. Statins moderate coronary stenoses but not coronary calcification: results from meta-analyses. Int J Cardiol. 2011;153(1):31–5. doi:10.1016/j.ijcard.2010.08.031.

    Article  PubMed  Google Scholar 

  13. Raggi P, Gongora MC, Gopal A, Callister TQ, Budoff M, Shaw LJ. Coronary artery calcium to predict all-cause mortality in elderly men and women. J Am Coll Cardiol. 2008;52(1):17–23. doi:10.1016/j.jacc.2008.04.004.

    Article  PubMed  Google Scholar 

  14. Block GA, Raggi P, Bellasi A, Kooienga L, Spiegel DM. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 2007;71:438–41.

    Article  CAS  PubMed  Google Scholar 

  15. Di Iorio B, Bellasi A. Impact of vascular calcification on QT interval and QT dispersion in CKD and dialysis patients. Am J Nephrol. 2012;35(3):287. doi:10.1159/000336305.

    Article  PubMed  Google Scholar 

  16. Raggi P, Cooil B, Callister TQ. Use of electron beam tomography data to develop models for prediction of hard coronary events. Am Heart J. 2001;141(3):375–82. doi:10.1067/mhj.2001.113220.

    Article  CAS  PubMed  Google Scholar 

  17. Budoff MJ, Rader DJ, Reilly MP, Mohler 3rd ER, Lash J, Yang W, et al. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort) study. Am J Kidney Dis. 2011;58(4):519–26. doi:10.1053/j.ajkd.2011.04.024.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68(4):1815–24.

    Article  CAS  PubMed  Google Scholar 

  19. Moe SM, O’Neill KD, Reslerova M, Fineberg N, Persohn S, Meyer CA. Natural history of vascular calcification in dialysis and transplant patients. Nephrol Dial Transplant. 2004;19(9):2387–93.

    Article  PubMed  Google Scholar 

  20. Schwarz U, Buzello M, Ritz E, Stein G, Raabe G, Wiest G, et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol Dial Transplant. 2000;15(2):218–23.

    Article  CAS  PubMed  Google Scholar 

  21. Gross ML, Meyer HP, Ziebart H, Rieger P, Wenzel U, Amann K, et al. Calcification of coronary intima and media: immunohistochemistry, backscatter imaging, and x-ray analysis in renal and nonrenal patients. Clin J Am Soc Nephrol. 2007;2(1):121–34.

    Article  PubMed  Google Scholar 

  22. Nakamura S, Ishibashi-Ueda H, Niizuma S, Yoshihara F, Horio T, Kawano Y. Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin J Am Soc Nephrol. 2009;4(12):1892–900. doi:10.2215/CJN.04320709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Moe SM, O’Neill KD, Duan D, Ahmed S, Chen NX, Leapman SB, et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 2002;61(2):638–47.

    Article  PubMed  Google Scholar 

  24. Allison MA, Hsi S, Wassel CL, Morgan C, Ix JH, Wright CM, et al. Calcified atherosclerosis in different vascular beds and the risk of mortality. Arterioscler Thromb Vasc Biol. 2012;32(1):140–6. doi:10.1161/ATVBAHA.111.235234.

    Article  CAS  PubMed  Google Scholar 

  25. Hutchison AJ, Whitehouse RW, Boulton HF, Adams JE, Mawer EB, Freemont TJ, et al. Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int. 1993;44(5):1071–7.

    Article  CAS  PubMed  Google Scholar 

  26. Braun J, Oldendorf M, Moshage W, Heidler R, Zeitler E, Luft FC. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis. 1996;27(3):394–401.

    Article  CAS  PubMed  Google Scholar 

  27. London GM, Marty C, Marchais SJ, Guerin AP, Metivier F, De Vernejoul MC. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004;15(7):1943–51.

    Article  PubMed  Google Scholar 

  28. Barreto DV, Barreto Fde C, Carvalho AB, Cuppari L, Draibe SA, Dalboni MA, et al. Association of changes in bone remodeling and coronary calcification in hemodialysis patients: a prospective study. Am J Kidney Dis. 2008;52(6):1139–50. doi:10.1053/j.ajkd.2008.06.024.

    Article  CAS  PubMed  Google Scholar 

  29. Kurz P, Monier-Faugere MC, Bognar B, Werner E, Roth P, Vlachojannis J, et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 1994;46(3):855–61.

    Article  CAS  PubMed  Google Scholar 

  30. Cejka D, Marculescu R, Kozakowski N, Plischke M, Reiter T, Gessl A, et al. Renal elimination of sclerostin increases with declining kidney function. J Clin Endocrinol Metab. 2014;99(1):248–55. doi:10.1210/jc.2013-2786.

    Article  CAS  PubMed  Google Scholar 

  31. Price PA, June HH, Buckley JR, Williamson MK. SB 242784, a selective inhibitor of the osteoclastic V-H+ATPase, inhibits arterial calcification in the rat. Circ Res. 2002;91(6):547–52.

    Article  CAS  PubMed  Google Scholar 

  32. Lomashvili KA, Monier-Faugere MC, Wang X, Malluche HH, O’Neill WC. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int. 2009. doi:10.1038/ki.2008.646.

    PubMed Central  PubMed  Google Scholar 

  33. Moe SM, Seifert MF, Chen NX, Sinders RM, Chen X, Duan D, et al. R-568 reduces ectopic calcification in a rat model of chronic kidney disease-mineral bone disorder (CKD-MBD). Nephrol Dial Transplant. 2009. doi:10.1093/ndt/gfp078.

    PubMed  Google Scholar 

  34. Allen MR, Chen NX, Gattone 2nd VH, Chen X, Carr AJ, LeBlanc P, et al. Skeletal effects of zoledronic acid in an animal model of chronic kidney disease. Osteoporos Int. 2013;24(4):1471–81. doi:10.1007/s00198-012-2103-x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Davies MR, Lund RJ, Mathew S, Hruska KA. Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. J Am Soc Nephrol. 2005;16(4):917–28. doi:10.1681/ASN.2004100835.

    Article  CAS  PubMed  Google Scholar 

  36. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–50. doi:10.1038/ki.2013.271.

    Article  CAS  PubMed  Google Scholar 

  37. Lomashvili KA, Wang X, O’Neill WC. Role of local versus systemic vitamin d receptors in vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34(1):146–51. doi:10.1161/ATVBAHA.113.302525.

    Article  CAS  PubMed  Google Scholar 

  38. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005;19(9):1093–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Moe SM, Duan D, Doehle BP, O’Neill KD, Chen NX. Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int. 2003;63(3):1003–11.

    Article  CAS  PubMed  Google Scholar 

  40. Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118(17):1748–57. doi:10.1161/CIRCULATIONAHA.108.783738.

    Article  CAS  PubMed  Google Scholar 

  41. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation [see comments]. Cell. 1997;89(5):747–54. This paper clearly demosntrated the role of RUNX2/Cbfa1 in the osteoblast differenctiation and therefore the marker for transformation of vascuar smooth msucel cells.

    Article  CAS  PubMed  Google Scholar 

  42. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89(12):1147–54.

    Article  CAS  PubMed  Google Scholar 

  43. Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104(6):733–41. doi:10.1161/CIRCRESAHA.108.183053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Heath JM, Sun Y, Yuan K, Bradley WE, Litovsky S, Dell’Italia LJ, et al. Activation of AKT by O-linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circ Res. 2014;114(7):1094–102. doi:10.1161/CIRCRESAHA.114.302968.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Monk BA, George SJ. The effect of ageing on vascular smooth muscle cell behaviour—a mini-review. Gerontology. 2014. doi:10.1159/000368576.

    PubMed  Google Scholar 

  46. Shanahan CM. Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol. 2013;9(11):661–70. doi:10.1038/nrneph.2013.176.

    Article  CAS  PubMed  Google Scholar 

  47. Crouthamel MH, Lau WL, Leaf EM, Chavkin NW, Wallingford MC, Peterson DF, et al. Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: redundant roles for PiT-1 and PiT-2. Arterioscler Thromb Vasc Biol. 2013;33(11):2625–32. doi:10.1161/ATVBAHA.113.302249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen NX, Duan D, O’Neill KD, Wolisi GO, Koczman JJ, Laclair R, et al. The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int. 2006;70:1046–53.

    Article  CAS  PubMed  Google Scholar 

  49. Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011;109(1):e1–12. doi:10.1161/CIRCRESAHA.110.238808.

    Article  CAS  PubMed  Google Scholar 

  50. Katsumata K, Kusano K, Hirata M, Tsunemi K, Nagano N, Burke SK, et al. Sevelamer hydrochloride prevents ectopic calcification and renal osteodystrophy in chronic renal failure rats. Kidney Int. 2003;64(2):441–50.

    Article  CAS  PubMed  Google Scholar 

  51. Cozzolino M, Dusso AS, Liapis H, Finch J, Lu Y, Burke SK, et al. The effects of sevelamer hydrochloride and calcium carbonate on kidney calcification in uremic rats. J Am Soc Nephrol. 2002;13(9):2299–308.

    Article  CAS  PubMed  Google Scholar 

  52. Moe SM, Chen NX, Seifert MF, Sinders RM, Duan D, Chen X, et al. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009;75(2):176–84. doi:10.1038/ki.2008.456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Neves KR, Graciolli FG, dos Reis LM, Graciolli RG, Neves CL, Magalhaes AO, et al. Vascular calcification: contribution of parathyroid hormone in renal failure. Kidney Int. 2007;71(12):1262–70.

    Article  CAS  PubMed  Google Scholar 

  54. Graciolli FG, Neves KR, dos Reis LM, Graciolli RG, Noronha IL, Moyses RM, et al. Phosphorus overload and PTH induce aortic expression of Runx2 in experimental uraemia. Nephrol Dial Transplant. 2009;24(5):1416–21. doi:10.1093/ndt/gfn686.

    Article  CAS  PubMed  Google Scholar 

  55. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24(2):179–89. doi:10.1681/ASN.2011121191.

    Article  CAS  PubMed  Google Scholar 

  56. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15(11):2857–67. doi:10.1097/01.ASN.0000141960.01035.28.

    Article  CAS  PubMed  Google Scholar 

  57. Chen NX, O’Neill KD, Chen X, Moe SM. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res. 2008;23(11):1798–805. doi:10.1359/jbmr.080604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Ewence AE, Bootman M, Roderick HL, Skepper JN, McCarthy G, Epple M, et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008;103(5):e28–34. doi:10.1161/CIRCRESAHA.108.181305.

    Article  CAS  PubMed  Google Scholar 

  59. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  60. Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78. doi:10.1101/gad.1842409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Leopold JA. MicroRNAs regulate vascular medial calcification. Cells. 2014;3(4):963–80. doi:10.3390/cells3040963.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Chen NX, Kiattisunthorn K, O’Neill KD, Chen X, Moorthi RN, Gattone 2nd VH, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One. 2013;8(5):e64558. doi:10.1371/journal.pone.0064558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC. miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol. 2011;179(4):1594–600. doi:10.1016/j.ajpath.2011.06.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Cui RR, Li SJ, Liu LJ, Yi L, Liang QH, Zhu X, et al. MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res. 2012;96(2):320–9. doi:10.1093/cvr/cvs258.

    Article  CAS  PubMed  Google Scholar 

  65. Balderman JA, Lee HY, Mahoney CE, Handy DE, White K, Annis S, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc. 2012;1(6):e003905. doi:10.1161/JAHA.112.003905.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Gui T, Zhou G, Sun Y, Shimokado A, Itoh S, Oikawa K, et al. MicroRNAs that target Ca(2+) transporters are involved in vascular smooth muscle cell calcification. Lab Invest. 2012;92(9):1250–9. doi:10.1038/labinvest.2012.85.

    Article  CAS  PubMed  Google Scholar 

  67. Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res. 2013;112(7):1073–84. doi:10.1161/CIRCRESAHA.113.300937.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Chaturvedi P, Chen NX, O’Neill K, McClintick JN, Moe SM, Janga SC. Differential miRNA expression in cells and matrix vesicles in vascular smooth muscle cells from rats with kidney disease. PLoS One. 2015;10(6):e0131589. doi:10.1371/journal.pone.0131589.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75(9):890–7. doi:10.1038/ki.2008.644. This paper described the importance and mechanism of phosphorus in the development of vascularcalcification.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Trombetti A, Stoermann C, Chevalley T, Van Rietbergen B, Herrmann FR, Martin PY, et al. Alterations of bone microstructure and strength in end-stage renal failure. Osteoporos Int. 2012. doi:10.1007/s00198-012-2133-4.

    Google Scholar 

  71. Dautova Y, Kozlova D, Skepper JN, Epple M, Bootman MD, Proudfoot D. Fetuin-a and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells. PLoS One. 2014;9(5):e97565. doi:10.1371/journal.pone.0097565.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, et al. Association of low fetuin-a (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet. 2003;361(9360):827–33.

    Article  CAS  PubMed  Google Scholar 

  73. Moe SM. Disorders of calcium, phosphorus, and magnesium. Am J Kidney Dis. 2005;45(1):213–8.

    Article  PubMed  Google Scholar 

  74. Stenvinkel P, Wang K, Qureshi AR, Axelsson J, Pecoits-Filho R, Gao P, et al. Low fetuin-a levels are associated with cardiovascular death: impact of variations in the gene encoding fetuin. Kidney Int. 2005;67(6):2383–92.

    Article  CAS  PubMed  Google Scholar 

  75. Schoppet M, Rauner M, Benner J, Chapurlat R, Hofbauer LC, Szulc P. Serum fetuin-a levels and abdominal aortic calcification in healthy men—the STRAMBO study. Bone. 2015;79:196–202. doi:10.1016/j.bone.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  76. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005;16(10):2920–30. doi:10.1681/ASN.2004100895.

    Article  CAS  PubMed  Google Scholar 

  77. Denecke B, Graber S, Schafer C, Heiss A, Woltje M, Jahnen-Dechent W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-a. Biochem J. 2003;376(Pt 1):135–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Westenfeld R, Schafer C, Kruger T, Haarmann C, Schurgers LJ, Reutelingsperger C, et al. Fetuin-a protects against atherosclerotic calcification in CKD. J Am Soc Nephrol. 2009;20(6):1264–74. doi:10.1681/ASN.2008060572.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386(6620):78–81.

    Article  CAS  PubMed  Google Scholar 

  80. Beazley KE, Lima F, Borras T, Nurminskaya M. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model. PLoS One. 2013;8(9):e76210. doi:10.1371/journal.pone.0076210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Cranenburg EC, Vermeer C, Koos R, Boumans ML, Hackeng TM, Bouwman FG, et al. The circulating inactive form of matrix Gla protein (ucMGP) as a biomarker for cardiovascular calcification. J Vasc Res. 2008;45(5):427–36. doi:10.1159/000124863.

    Article  CAS  PubMed  Google Scholar 

  82. McCabe KM, Booth SL, Fu X, Shobeiri N, Pang JJ, Adams MA, et al. Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int. 2013;83(5):835–44. doi:10.1038/ki.2012.477.

    Article  CAS  PubMed  Google Scholar 

  83. Westenfeld R, Krueger T, Schlieper G, Cranenburg EC, Magdeleyns EJ, Heidenreich S, et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis. 2012;59(2):186–95. doi:10.1053/j.ajkd.2011.10.041.

    Article  CAS  PubMed  Google Scholar 

  84. Schurgers LJ. Vitamin K: key vitamin in controlling vascular calcification in chronic kidney disease. Kidney Int. 2013;83(5):782–4. doi:10.1038/ki.2013.26.

    Article  CAS  PubMed  Google Scholar 

  85. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med. 2001;79(5–6):243–53.

    Article  CAS  PubMed  Google Scholar 

  86. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000;192(4):463–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, Dwyer D, et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation. 2008;117(3):411–20. doi:10.1161/CIRCULATIONAHA.107.707380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Callegari A, Coons ML, Ricks JL, Yang HL, Gross TS, Huber P, et al. Bone marrow- or vessel wall-derived osteoprotegerin is sufficient to reduce atherosclerotic lesion size and vascular calcification. Arterioscler Thromb Vasc Biol. 2013;33(11):2491–500. doi:10.1161/ATVBAHA.113.301755.

    Article  CAS  PubMed  Google Scholar 

  89. Deuell KA, Callegari A, Giachelli CM, Rosenfeld ME, Scatena M. RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-alpha. J Vasc Res. 2012;49(6):510–21. doi:10.1159/000341216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Lomashvili KA, Garg P, Narisawa S, Millan JL, O’Neill WC. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int. 2008;73(9):1024–30. doi:10.1038/ki.2008.26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003;34(4):379–81. doi:10.1038/ng1221.

    Article  CAS  PubMed  Google Scholar 

  92. Lomashvili KA, Khawandi W, O’Neill WC. Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol. 2005;16(8):2495–500.

    Article  CAS  PubMed  Google Scholar 

  93. O’Neill WC, Sigrist MK, McIntyre CW. Plasma pyrophosphate and vascular calcification in chronic kidney disease. Nephrol Dial Transplant. 2009. doi:10.1093/ndt/gfp362.

    PubMed Central  Google Scholar 

  94. Lomashvili KA, Narisawa S, Millan JL, O’Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int. 2014. doi:10.1038/ki.2013.521.

    PubMed Central  PubMed  Google Scholar 

  95. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31(4):607–17.

    Article  CAS  PubMed  Google Scholar 

  96. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.

    Article  CAS  PubMed  Google Scholar 

  97. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112(17):2627–33.

    Article  CAS  PubMed  Google Scholar 

  98. Moe SM, Chertow GM. The case against calcium-based phosphate binders. Clin J Am Soc Nephrol. 2006;1(4):697–703. doi:10.2215/cjn.00560206.

    Article  CAS  PubMed  Google Scholar 

  99. Yang H, Curinga G, Giachelli CM. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 2004;66(6):2293–9.

    Article  CAS  PubMed  Google Scholar 

  100. Balci M, Kirkpantur A, Gulbay M, Gurbuz OA. Plasma fibroblast growth factor-23 levels are independently associated with carotid artery atherosclerosis in maintenance hemodialysis patients. Hemodial Int. 2010;14(4):425–32. doi:10.1111/j.1542-4758.2010.00480.x.

    Article  PubMed  Google Scholar 

  101. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int. 2011. doi:10.1007/s00198-011-1838-0.

    PubMed  Google Scholar 

  102. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68. doi:10.1038/ki.2013.3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial. 2007;20(4):302–8. doi:10.1111/j.1525-139X.2007.00308.x.

    Article  PubMed  Google Scholar 

  104. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  105. El-Abbadi MM, Pai AS, Leaf EM, Yang HY, Bartley BA, Quan KK, et al. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 2009;75(12):1297–307. doi:10.1038/ki.2009.83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Takei Y, Yamamoto H, Sato T, Otani A, Kozai M, Masuda M, et al. Stanniocalcin 2 is associated with ectopic calcification in alpha-klotho mutant mice and inhibits hyperphosphatemia-induced calcification in aortic vascular smooth muscle cells. Bone. 2012;50(4):998–1005. doi:10.1016/j.bone.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  107. Lindberg K, Olauson H, Amin R, Ponnusamy A, Goetz R, Taylor RF, et al. Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS One. 2013;8(4):e60658. doi:10.1371/journal.pone.0060658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B, Shimizu Y, et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of klotho deficiency. Kidney Int. 2014;85(5):1103–11. doi:10.1038/ki.2013.332.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors of this article have no conflicts of interests to disclose.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal X. Chen.

Additional information

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N.X., Moe, S.M. Pathophysiology of Vascular Calcification. Curr Osteoporos Rep 13, 372–380 (2015). https://doi.org/10.1007/s11914-015-0293-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0293-9

Keywords

Navigation