Skip to main content

Advertisement

Log in

Aneuploidy and Skeletal Health

  • Hot Topic
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down’s syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity, and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health, and quality of life of people with Down syndrome will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tijo J-H, Levan A. The chromosome number of man. Hereditas. 1956;42:1–6. Original elucidation of the number of human chromosomes.

  2. Wallerstein R, Yu MT, Neu RL, et al. Common trisomy mosaicism diagnosed in amniocytes involving chromosomes 13, 18, 20 and 21: karyotype-phenotype correlations. Prenat Diagn. 2000;20(2):103–22.

    Article  CAS  PubMed  Google Scholar 

  3. Luthardt FW, Keitges E. Chromosomal Syndromes and Genetic Disease. eLS: John Wiley & Sons, Ltd; 2001.

  4. Hassold GN, Dreitlein JF, Beale PD, Scott JF. Dynamics of the two-dimensional axial third-nearest-neighbor Ising model: entrainment and diffusivity. Phys Rev. 1986;33(5):3581–4.

    Article  Google Scholar 

  5. Schreinemachers DM, Cross PK, Hook EB. Rates of trisomies 21, 18, 13 and other chromosome abnormalities in about 20 000 prenatal studies compared with estimated rates in live births. Hum Genet. 1982;61(4):318–24.

    Article  CAS  PubMed  Google Scholar 

  6. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K. Bone mineral density in adults with Down's syndrome. Eur Radiol. 1999;9(4):648–51.

    Article  CAS  PubMed  Google Scholar 

  7. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int. 2005;16(4):380–8.

    Article  PubMed  Google Scholar 

  8. Fowler TW, McKelvey KD, Akel NS, et al. Low bone turnover and low BMD in Down syndrome: effect of intermittent PTH treatment. PLoS One. 2012;7(8):e42967. Identifies efficacy of anabolic therapy to increase Bone mass in Down syndrome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. McKelvey KD, Fowler TW, Akel NS, et al. Low bone turnover and low bone density in a cohort of adults with Down syndrome. Osteoporos Int. 2012;24(4):1333–8. Demonstrates low bone mass and turnover in Down syndrome males and females compared with normal controls.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V. Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynaecol Reprod Biol. 2002;100(2):208–12.

    Article  CAS  Google Scholar 

  11. Zubillaga P, Garrido A, Mugica I, Ansa J, Zabalza R, Emparanza JI. Effect of vitamin D and calcium supplementation on bone turnover in institutionalized adults with Down's syndrome. Eur J Clin Nutr. 2006;60(5):605–9.

    Article  CAS  PubMed  Google Scholar 

  12. Down JLH. Observations on an ethnic classification of idiots. Clin Lect Rep Lond Hosp. 1866;3:259–62. Original description of Down syndrome.

  13. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5(10):725–38.

    Article  CAS  PubMed  Google Scholar 

  14. Huether CA, Ivanovich J, Goodwin BS, et al. Maternal age specific risk rate estimates for Down syndrome among live births in whites and other races from Ohio and metropolitan Atlanta, 1970-1989. J Med Genet. 1998;35(6):482–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cocchi G, Gualdi S, Bower C, et al. International trends of Down syndrome 1993-2004: Births in relation to maternal age and terminations of pregnancies. Birth Defects Res A Clin Mol Teratol. 2010;88(6):474–9.

    Article  CAS  PubMed  Google Scholar 

  16. Zywiel MG, Mont MA, Callaghan JJ, et al. Surgical challenges and clinical outcomes of total hip replacement in patients with Down's syndrome. Bone Joint J. 2013;95-B(11 Suppl A):41–5.

    Article  CAS  PubMed  Google Scholar 

  17. Coppus AM, Evenhuis HM, Verberne GJ, et al. Survival in elderly persons with Down syndrome. J Am Geriatr Soc. 2008;56(12):2311–6.

    Article  PubMed  Google Scholar 

  18. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH. The changing survival profile of people with Down's syndrome: implications for genetic counselling. Clin Genet. 2002;62(5):390–3.

    Article  CAS  PubMed  Google Scholar 

  19. Zigman WB. Atypical aging in Down syndrome. Dev Disabil Res Rev. 2013;18(1):51–67.

    Article  PubMed  Google Scholar 

  20. Hawli Y, Nasrallah M, El-Hajj FG. Endocrine and musculoskeletal abnormalities in patients with Down syndrome. Nat Rev. 2009;5(6):327–34.

    CAS  Google Scholar 

  21. Lohiya GS, Crinella FM, Tan-Figueroa L, Caires S, Lohiya S. Fracture epidemiology and control in a developmental center. West J Med. 1999;170(4):203–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Schrager S, Kloss C, Ju AW. Prevalence of fractures in women with intellectual disabilities: a chart review. J Intellect Disabil Res. 2007;51(Pt 4):253–9.

    Article  CAS  PubMed  Google Scholar 

  23. Suva LJ, Gaddy D, Perrien DS, Thomas RL, Findlay DM. Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr Osteoporos Rep. 2005;3(2):46–51.

    Article  PubMed  Google Scholar 

  24. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet. 2000;355(9199):165–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Q, Rasmussen SA, Friedman JM. Mortality associated with Down's syndrome in the USA from 1983 to 1997: a population-based study. Lancet. 2002;359(9311):1019–25.

    Article  PubMed  Google Scholar 

  26. Castells S, Beaulieu I, Torrado C, Wisniewski KE, Zarny S, Gelato MC. Hypothalamic versus pituitary dysfunction in Down's syndrome as cause of growth retardation. J Intellect Disabil Res. 1996;40(Pt 6):509–17.

    Article  PubMed  Google Scholar 

  27. Waller DK, Anderson JL, Lorey F, Cunningham GC. Risk factors for congenital hypothyroidism: an investigation of infant's birth weight, ethnicity, and gender in California, 1990-1998. Teratology. 2000;62(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki K, Nakajima K, Kamimura S, et al. Eight case reports on sex-hormone profiles in sexually mature male Down syndrome. Int J Urol. 2010;17(12):1008–10.

    Article  CAS  PubMed  Google Scholar 

  29. Hsiang YH, Berkovitz GD, Bland GL, Migeon CJ, Warren AC. Gonadal function in patients with Down syndrome. Am J Med Genet. 1987;27(2):449–58.

    Article  CAS  PubMed  Google Scholar 

  30. Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K. Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int. 2000;66(3):176–80.

    Article  CAS  PubMed  Google Scholar 

  31. da Silva VZ, de Franca BJ, de Azevedo M, de Godoy JR, Arena R, Cipriano Jr G. Bone mineral density and respiratory muscle strength in male individuals with mental retardation (with and without Down Syndrome). Res Dev Disabil. 2010;31(6):1585–9.

    Article  PubMed  Google Scholar 

  32. Gonzalez-Aguero A, Vicente-Rodriguez G, Moreno LA, Casajus JA. Bone mass in male and female children and adolescents with Down syndrome. Osteoporos Int. 2011;22(7):2151–7.

    Article  CAS  PubMed  Google Scholar 

  33. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA. Bone mass in young adults with Down syndrome. J Intellect Disabil Res. 2008;52(Pt 3):182–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kao CH, Chen CC, Wang SJ, Yeh SH. Bone mineral density in children with Down's syndrome detected by dual photon absorptiometry. Nucl Med Commun. 1992;13(10):773–5.

    Article  CAS  PubMed  Google Scholar 

  35. Blazek JD, Gaddy A, Meyer R, Roper RJ, Li J. Disruption of bone development and homeostasis by trisomy in Ts65Dn Down syndrome mice. Bone. 2011;48(2):275–80. First low bone mass demonstration in Ts65 DN mice.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. van Allen MI, Fung J, Jurenka SB. Health care concerns and guidelines for adults with Down syndrome. Am J Med Genet. 1999;89(2):100–10.

    Article  PubMed  Google Scholar 

  37. Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21(9):1489–95.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tabensky A, Duan Y, Edmonds J, Seeman E. The contribution of reduced peak accrual of bone and age-related bone loss to osteoporosis at the spine and hip: insights from the daughters of women with vertebral or hip fractures. J Bone Miner Res. 2001;16(6):1101–7.

    Article  CAS  PubMed  Google Scholar 

  39. Olson LE, Mohan S. Bone density phenotypes in mice aneuploid for the Down syndrome critical region. Am J Med Genet. 2011;155(10):2436–45. Provides first detailed glimpse of low bone mass in Down syndrome animal models.

    Article  Google Scholar 

  40. Morad M, Kandel I, Merrick-Kenig E, Merrick J. Persons with Down syndrome in residential care in Israel: trends for 1998-2006. Int J Adolesc Med Health. 2009;21(1):131–4.

    PubMed  Google Scholar 

  41. Pizzutillo PD, Herman MJ. Cervical spine issues in Down syndrome. J Pediat Orthop. 2005;25(2):253–9.

    Article  Google Scholar 

  42. Pueschel SM, Scola FH, Tupper TB, Pezzullo JC. Skeletal anomalies of the upper cervical spine in children with Down syndrome. J Pediat Orthop. 1990;10(5):607–11.

    Article  CAS  Google Scholar 

  43. Mendez AA, Keret D, MacEwen GD. Treatment of patellofemoral instability in Down's syndrome. Clin Orthop Relat Res. 1988;234:148–58.

    PubMed  Google Scholar 

  44. Diamond LS, Lynne D, Sigman B. Orthopedic disorders in patients with Down's syndrome. Orthop Clin N Am. 1981;12(1):57–71.

    CAS  Google Scholar 

  45. Caird MS, Wills BP, Dormans JP. Down syndrome in children: the role of the orthopaedic surgeon. J Am Acad Orthop Surg. 2006;14(11):610–9.

    PubMed  Google Scholar 

  46. Shaw ED, Beals RK. The hip joint in Down's syndrome. A study of its structure and associated disease. Clin Orthop Relat Res. 1992;278:101–7.

    PubMed  Google Scholar 

  47. Bosch P, Johnston CE, Karol L. Slipped capital femoral epiphysis in patients with Down syndrome. J Pediatr Orthop. 2004;24(3):271–7.

    Article  PubMed  Google Scholar 

  48. Greene WB. Closed treatment of hip dislocation in Down syndrome. J Pediatr Orthop. 1998;18(5):643–7.

    Article  CAS  PubMed  Google Scholar 

  49. Bennet GC, Rang M, Roye DP, Aprin H. Dislocation of the hip in trisomy 21. J Bone Joint Surg (Br). 1982;64(3):289–94.

    CAS  Google Scholar 

  50. Katz DA, Kim YJ, Millis MB. Periacetabular osteotomy in patients with Down's syndrome. J Bone Joint Surg (Br). 2005;87(4):544–7.

    Article  CAS  Google Scholar 

  51. Gill CE, Taylor HM, Lin KT, et al. Difficulty in securing treatment for degenerative hip disease in a patient with Down syndrome: the gap remains open. J Natl Med Assoc. 2006;98(1):93–6.

    PubMed Central  PubMed  Google Scholar 

  52. Stefanidis K, Belitsos P, Fotinos A, Makris N, Loutradis D, Antsaklis A. Causes of infertility in men with Down syndrome. Andrologia. 2011;43(5):353–7.

    Article  CAS  PubMed  Google Scholar 

  53. Moore CS, Hawkins C, Franca A, et al. Increased male reproductive success in Ts65Dn "Down syndrome" mice. Mamm Genome. 2010;21(11–12):543–9.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Pradhan M, Dalal A, Khan F, Agrawal S. Fertility in men with Down syndrome: a case report. Fertil Steril. 2006;86(6):1765.e1–3.

    Article  Google Scholar 

  55. Grimwood JS, Kumar A, Bickerstaff DR, Suvarna SK. Histological assessment of vertebral bone in a Down's syndrome adult with osteoporosis. Histopathology. 2000;36(3):279–80. Only histologic analysis of human bone from a Down syndrome patient.

  56. Bone H. Future directions in osteoporosis therapeutics. Endocrinol Metab Clin N Am. 2012;41(3):655–61.

    Article  Google Scholar 

  57. Spatz JM, Ellman R, Cloutier AM, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013;28(4):865–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20.

    Article  CAS  PubMed  Google Scholar 

  59. Jesudason D, Clifton P. The interaction between dietary protein and bone health. J Bone Miner Metab. 2011;29(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  60. New SA, Robins SP, Campbell MK, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000;71(1):142–51.

    CAS  PubMed  Google Scholar 

  61. Chen JR, Lazarenko OP, Wu X, et al. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/beta-catenin canonical Wnt signaling. J Bone Miner Res. 2010;25(11):2399–411.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Lazarenko OP, Blackburn ML, Badger TM, Ronis MJ, Chen JR. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells. Age. 2013;35(3):807–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhang J, Lazarenko OP, Kang J, et al. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells. PLoS One. 2013;8(8):e70438.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Arjmandi BH, Khalil DA, Lucas EA, et al. Dried plums improve indices of bone formation in postmenopausal women. J Women Health Gend Med. 2002;11(1):61–8.

    Article  Google Scholar 

  65. Deyhim F, Stoecker BJ, Brusewitz GH, Devareddy L, Arjmandi BH. Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause. 2005;12(6):755–62.

    Article  PubMed  Google Scholar 

  66. Riggs BL. Role of the vitamin D-endocrine system in the pathophysiology of postmenopausal osteoporosis. J Cell Biochem. 2003;88(2):209–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Carl L. Nelson Chair of Orthopaedic Creativity (LJS), the Rockefeller Chair in Clinical Genetics (KDM), and a grant from the UAMS Translational Research Institute (TRI) UL1RR029884. The authors thank M. R. Forwood of Griffith University (Australia) for his review of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

A. Kamalakar, J. R. Harris, and K. D. McKelvey declare that they have no conflicts of interest. LJ Suva has received research support from the NIH.

Human and Animal Rights and Informed Consent

All studies by K. D. McKelvey and L. J. Suva involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry J. Suva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalakar, A., Harris, J.R., McKelvey, K.D. et al. Aneuploidy and Skeletal Health. Curr Osteoporos Rep 12, 376–382 (2014). https://doi.org/10.1007/s11914-014-0221-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0221-4

Keywords

Navigation