Skip to main content

Advertisement

Log in

Imaging of the Muscle-Bone Relationship

  • Imaging (T Lang and F Wehrli, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Muscle can be assessed by imaging techniques according to its size (as thickness, area, volume, or alternatively, as a mass) and architecture (fiber length and pennation angle), with values used as an anthropometric measure or a surrogate for force production. Similarly, the size of the bone (as area or volume) can be imaged using MRI or pQCT, although typically bone mineral mass is reported. Bone imaging measures of mineral density, size, and geometry can also be combined to calculate bone’s structural strength—measures being highly predictive of bone’s failure load ex vivo. Imaging of muscle-bone relationships can, hence, be accomplished through a number of approaches by adoption and comparison of these different muscle and bone parameters, dependent on the research question under investigation. These approaches have revealed evidence of direct, mechanical muscle-bone interactions independent of allometric associations. They have led to important information on bone mechanoadaptation and the influence of muscular action on bone, in addition to influences of age, gender, exercise, and disuse on muscle-bone relationships. Such analyses have also produced promising diagnostic tools for clinical use, such as identification of primary, disuse-induced, and secondary osteoporosis and estimation of bone safety factors. Standardization of muscle-bone imaging methods is required to permit more reliable comparisons between studies and differing imaging modes, and in particular to aid adoption of these methods into widespread clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rittweger J, Ferretti JL. Imaging muscle-bone relationships—how to see the invisible. Clion Rev Bone Min Metab. 2014 [In press].

  2. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature. 1971;233:533–8.

    Article  PubMed  CAS  Google Scholar 

  3. Jones D, Round J, de Haan A. Skeletal muscle from molecules to movement. London: Churchill Livingstone; 2004.

    Google Scholar 

  4. Haxton HA. Absolute muscle force in the ankle flexors of man. J Physiol. 1944;103:267–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Galban CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol. 2004;93:253–62.

    Article  PubMed  Google Scholar 

  6. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59:954–62.

    PubMed  CAS  Google Scholar 

  7. Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21:13–6.

    Article  PubMed  CAS  Google Scholar 

  8. Alho A, Husby T, Høiseth A. Bone mineral content and mechanical strength. An ex vivo study on human femora at autopsy. Clin Orthop Relat Res. 1988;227:292–7.

    PubMed  CAS  Google Scholar 

  9. Jämsä T, Jalovaara P, Peng Z, Väänänen HK, Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone. 1998;23:155–61.

    Article  PubMed  Google Scholar 

  10. Ferretti JL, Capozza RF, Zanchetta JR. Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone. 1996;18:97.

    Article  PubMed  CAS  Google Scholar 

  11. Wilhelm G, Felsenberg D, Bogusch G, Willnecker J, Thaten J, Gummert P. Biomechanical examinations for validation of the bone strength strain index SSI, calculated by peripheral quantitative computer tomography. In: Lyritis G, editor. Musculoskeletal interactions. Athens: Hylonome; 1999. p. 105–8.

    Google Scholar 

  12. Capozza RF, Rittweger J, Reina PS, Mortarino P, Nocciolino LM, Feldman S, et al. pQCT-assessed relationships between diaphyseal design and cortical bone mass and density in the tibiae of healthy sedentary and trained men and women. J Musculoskelet Neuronal Interact. 2013;13:195–205. Analyses of tibial diaphyseal design, proposing bone strength indices, which indicate the efficiency of bone mechanoadaptation in distributing cortical bone mass.

    PubMed  CAS  Google Scholar 

  13. Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12:1547–51.

    Article  PubMed  CAS  Google Scholar 

  14. Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res. 1997;12:2076–81.

    Article  PubMed  CAS  Google Scholar 

  15. Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M. Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res. 1997;12:144–51.

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol. 1998;147:3–16.

    Article  PubMed  CAS  Google Scholar 

  17. Ferretti JL, Capozza RF, Cointry GR, Capiglioni R, Roldan EJ, Zanchetta JR. Densitometric and tomographic analyses of musculoskeletal interactions in humans. J Musculoskelet Neuronal Interact. 2000;1:31–4.

    PubMed  CAS  Google Scholar 

  18. Cointry GR, Capozza RF, Ferretti SE, et al. Absorptiometric assessment of muscle-bone relationships in humans: reference, validation, and application studies. J Bone Miner Metab. 2005;23(Suppl):109–14.

    Article  PubMed  Google Scholar 

  19. Myburgh KH, Charette S, Zhou L, Steele CR, Arnaud S, Marcus R. Influence of recreational activity and muscle strength on ulnar bending stiffness in men. Med Sci Sports Exerc. 1993;25:592–6.

    PubMed  CAS  Google Scholar 

  20. Villa ML, Marcus R, Ramírez Delay R, Kelsey JL. Factors contributing to skeletal health of postmenopausal Mexican-American women. J Bone Miner Res. 1995;10:1233–42.

    Article  PubMed  CAS  Google Scholar 

  21. Schoenau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab. 2001;86:613–8.

    Article  PubMed  CAS  Google Scholar 

  22. LeBlanc A, Lin C, Shackelford L, et al. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol. 2000;89:2158–64.

    PubMed  CAS  Google Scholar 

  23. Gustavsson A, Thorsen K, Nordström P. A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Calcif Tissue Int. 2003;73:108–14.

    Article  PubMed  CAS  Google Scholar 

  24. Rico H, Revilla M, Villa LF, Ruiz-Contreras D, Hernández ER, Alvarez de Buergo M. The four-compartment models in body composition: data from a study with dual-energy X-ray absorptiometry and near-infrared interactance on 815 normal subjects. Metabolism. 1994;43:417–22.

    Article  PubMed  CAS  Google Scholar 

  25. Compston JE, Bhambhani M, Laskey MA, Murphy S, Khaw KT. Body composition and bone mass in post-menopausal women. Clin Endocrinol (Oxf). 1992;37:426–31.

    Article  CAS  Google Scholar 

  26. Tsunenari T, Tsutsumi M, Ohno K, Yamamoto Y, Kawakatsu M, Shimogaki K, et al. Age- and gender-related changes in body composition in Japanese subjects. J Bone Miner Res. 1993;8:397–402.

    Article  PubMed  CAS  Google Scholar 

  27. Khosla S, Atkinson EJ, Riggs BL, Melton LJ. Relationship between body composition and bone mass in women. J Bone Miner Res. 1996;11:857–63.

    Article  PubMed  CAS  Google Scholar 

  28. Valdimarsson O, Kristinsson JO, Stefansson SO, Valdimarsson S, Sigurdsson G. Lean mass and physical activity as predictors of bone mineral density in 16-20 year old women. J Intern Med. 1999;245:489–96.

    Article  PubMed  CAS  Google Scholar 

  29. Ferretti JL, Schiessl H, Frost HM. On new opportunities for absorptiometry. J Clin Densitom. 1998;1:41–53.

    Article  PubMed  CAS  Google Scholar 

  30. Ferretti JL, Capozza RF, Cointry GR, García SL, Plotkin H, Alvarez Filgueira ML, et al. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone. 1998;22:683–90.

    Article  PubMed  CAS  Google Scholar 

  31. Capozza RF, Cointry GR, Cure-Ramírez P, Ferretti JL, Cure-Cure C. A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women. Bone. 2004;35:283–95.

    Article  PubMed  CAS  Google Scholar 

  32. Martin R, Burr D, Sharkley N. Skeletal tissue mechanics. New York: Springer; 1998.

    Book  Google Scholar 

  33. Järvinen TL, Kannus P, Sievänen H. Estrogen and bone—a reproductive and locomotive perspective. J Bone Miner Res. 2003;18:1921–31.

    Article  PubMed  Google Scholar 

  34. Cure-Cure C, Capozza RF, Cointry GR, Meta M, Cure-Ramírez P, Ferretti JL. Reference charts for the relationships between dual-energy X-ray absorptiometry-assessed bone mineral content and lean mass in 3,063 healthy men and premenopausal and postmenopausal women. Osteoporos Int. 2005;16:2095–106.

    Article  PubMed  Google Scholar 

  35. Cointry GR, Capozza RF, Negri AL, Roldán EJ, Ferretti JL. Biomechanical background for a noninvasive assessment of bone strength and muscle-bone interactions. J Musculoskelet Neuronal Interact. 2004;4:1–11.

    PubMed  CAS  Google Scholar 

  36. Ferretti JL, Cointry GR, Capozza RF, Frost HM. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev. 2003;124:269–79.

    Article  PubMed  Google Scholar 

  37. Capozza RF, Cure-Cure C, Cointry GR, Meta M, Cure P, Rittweger J, et al. Association between low lean body mass and osteoporotic fractures after menopause. Menopause. 2008;15:905–13.

    Article  PubMed  Google Scholar 

  38. Schneider P, Biko J, Reiners C, Demidchik Y, Drozd V, Capozza R, et al. Impact of parathyroid status and Ca and vitamin-D supplementation on bone mass and muscle-bone relationships in 208 Belarussian children after thyroidectomy because of thyroid carcinoma. Exp Clin Endocrinol Diabetes. 2004;112:444–50.

    Article  PubMed  CAS  Google Scholar 

  39. Cotofana S, Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sänger AM, et al. Correlation between single-slice muscle anatomic cross-sectional area and muscle volume in thigh extensors, flexors and adductors of perimenopausal women. Eur J Appl Physiol. 2010;110:91–7.

    Article  PubMed  CAS  Google Scholar 

  40. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338:37–49.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Häkkinen K, Häkkinen A. Muscle cross-sectional area, force production and relaxation characteristics in women at different ages. Eur J Appl Physiol Occup Physiol. 1991;62:410–4.

    Article  PubMed  Google Scholar 

  42. Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172:249–55.

    Article  PubMed  CAS  Google Scholar 

  43. Akagi R, Takai Y, Ohta M, Kanehisa H, Kawakami Y, Fukunaga T. Muscle volume compared with cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age Ageing. 2009;38:564–9.

    Article  PubMed  Google Scholar 

  44. D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003;552:499–511.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Krivickas LS, Ansved T, Suh D, Frontera WR. Contractile properties of single muscle fibers in myotonic dystrophy. Muscle Nerve. 2000;23:529–37.

    Article  PubMed  CAS  Google Scholar 

  46. de Haan A, de Ruiter CJ, van Der Woude LH, Jongen PJ. Contractile properties and fatigue of quadriceps muscles in multiple sclerosis. Muscle Nerve. 2000;23:1534–41.

    Article  PubMed  Google Scholar 

  47. Neu CM, Rauch F, Rittweger J, Manz F, Schoenau E. Influence of puberty on muscle development at the forearm. Am J Physiol Endocrinol Metab. 2002;283:E103–7.

    PubMed  CAS  Google Scholar 

  48. Morse CI, Tolfrey K, Thom JM, Vassilopoulos V, Maganaris CN, Narici MV. Gastrocnemius muscle specific force in boys and men. J Appl Physiol. 2008;104:469–74.

    Article  PubMed  Google Scholar 

  49. Herzog W, Sartorio A, Lafortuna CL, et al. Commentaries on viewpoint: can muscle size fully account for strength differences between children and adults? J Appl Physiol. 2011;110:1750–3. discussion 1754.

    Article  PubMed  Google Scholar 

  50. Delmonico MJ, Harris TB, Visser M, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90:1579–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol. 2001;90:2157–65.

    PubMed  CAS  Google Scholar 

  52. Frost H. The Utah paradigm of skeletal physiology volume II. Athens: ISMNI; 2004.

    Google Scholar 

  53. Capozza RF, Feldman S, Mortarino P, Reina PS, Schiessl H, Rittweger J, et al. Structural analysis of the human tibia by tomographic (pQCT) serial scans. J Anat. 2010;216:470–81. Study showing that tibial bone structure through its length reflects adaptation to the loading regimes (eg, compression, bending, torsion) expected at the respective sites. Also, study proposes ratio of bone mass at 5% tibial length (primarily trabecular bone) to that at 15% length (primarily cortical bone) as a method of evaluating trabecular and cortical bone status at sites exposed to similar stress regimes.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Feldman S, Capozza RF, Mortarino PA, Reina PS, Ferretti JL, Rittweger J, et al. Site and sex effects on tibia structure in distance runners and untrained people. Med Sci Sports Exerc. 2012;44:1580–8.

    Article  PubMed  Google Scholar 

  55. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone. 1999;25:713–24.

    Article  PubMed  CAS  Google Scholar 

  56. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194:1174–6.

    Article  PubMed  CAS  Google Scholar 

  57. Rittweger J, Beller G, Ehrig J, et al. Bone-muscle strength indices for the human lower leg. Bone. 2000;27:319–26.

    Article  PubMed  CAS  Google Scholar 

  58. Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H, et al. Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc. 2013;45:1749–58. Shows the limitations of using local muscle CSA as a surrogate for muscular forces acting on the bone, and through analysis of MBSIs displays evidence of a dominating influence of torsional strains on humeral bone adaptation.

    Article  PubMed  Google Scholar 

  59. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102:368–73.

    Article  PubMed  CAS  Google Scholar 

  60. Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone. 2009;44:214–24.

    Article  PubMed  CAS  Google Scholar 

  61. Ireland A, Rittweger J, Degens H. The influence of muscular action on bone strength via exercise. Clin Rev Bone Min Metab. 2013;12:93–102.

  62. Daly RM, Saxon L, Turner CH, Robling AG, Bass SL. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone. 2004;34:281–7.

    Article  PubMed  CAS  Google Scholar 

  63. Ireland A, Maden-Wilkinson T, Ganse B, Degens H, Rittweger J. Effects of age and starting age upon side asymmetry in the arms of veteran tennis players: a cross-sectional study. Osteoporos Int. 2014;25:1389–400.

  64. Rittweger J, Winwood K, Seynnes O, de Boer M, Wilks D, Lea R, et al. Bone loss from the human distal tibia epiphysis during 24 days of unilateral lower limb suspension. J Physiol. 2006;577:331–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol. 2007;583:1079–91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, et al. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone. 2005;36:1019–29.

    Article  PubMed  Google Scholar 

  67. Bass SL, Eser P, Daly R. The effect of exercise and nutrition on the mechanostat. J Musculoskelet Neuronal Interact. 2005;5:239–54.

    PubMed  CAS  Google Scholar 

  68. Macdonald HM, Kontulainen SA, Mackelvie-O’Brien KJ, Petit MA, Janssen P, Khan KM, et al. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study. Bone. 2005;36:1003–11.

    Article  PubMed  Google Scholar 

  69. Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002;17:1095–101.

    Article  PubMed  Google Scholar 

  70. Schiessl H, Frost HM, Jee WS. Estrogen and bone-muscle strength and mass relationships. Bone. 1998;22:1–6.

    Article  PubMed  CAS  Google Scholar 

  71. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone. 2004;34:771–5.

    Article  PubMed  Google Scholar 

  72. Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, et al. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone. 1998;22:683.

    Article  PubMed  CAS  Google Scholar 

  73. Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone. 2005;36:568.

    Article  PubMed  Google Scholar 

  74. Bass SL, Saxon L, Corral AM, Rodda CP, Strauss BJ, Reidpath D, et al. Near normalisation of lumbar spine bone density in young women with osteopenia recovered from adolescent onset anorexia nervosa: a longitudinal study. J Pediatr Endocrinol Metab. 2005;18:897–907.

    Article  PubMed  Google Scholar 

  75. Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone. 2004;35:965–72.

    Article  PubMed  CAS  Google Scholar 

  76. Maden-Wilkinson TM, McPhee JS, Rittweger J, Jones DA, Degens H. Thigh muscle volume in relation to age, sex and femur volume. Age. 2014;36:383–93.

    Article  PubMed  CAS  Google Scholar 

  77. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4:e7038.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

A. Ireland, J. Rittweger, and J. L. Ferretti all declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Rittweger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ireland, A., Ferretti, J.L. & Rittweger, J. Imaging of the Muscle-Bone Relationship. Curr Osteoporos Rep 12, 486–495 (2014). https://doi.org/10.1007/s11914-014-0216-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0216-1

Keywords

Navigation