Skip to main content

Advertisement

Log in

Mechanical Regulation of Skeletal Development

  • Skeletal Biology (DB Burr, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Development of the various components of a normal skeleton requires highly regulated signalling systems that co-ordinate spatial and temporal patterns of cell division, cell differentiation, and morphogenesis. Much work in recent decades has revealed cascades of molecular signalling, acting through key transcription factors to regulate, for example, organized chondrogenic and osteogenic differentiation. It is now clear that mechanical stimuli are also required for aspects of skeletogenesis but very little is known about how the mechanical signals are integrated with classic biochemical signalling. Spatially organized differentiation is vital to the production of functionally appropriate tissues contributing to precise, region specific morphologies, for example transient chondrogenesis of long bone skeletal rudiments, which prefigures osteogenic replacement of the cartilage template, compared with the production of permanent cartilage at the sites of articulation. Currently a lack of understanding of how these tissues are differentially regulated hampers efforts to specifically regenerate stable bone and cartilage. Here, we review current research revealing the influence of mechanical stimuli on specific aspects of skeletal development and refer to other developing systems to set the scene for current and future work to uncover the molecular mechanisms involved. We integrate this with a brief overview of the effects of mechanical stimulation on stem cells in culture bringing together developmental and tissue engineering aspects of mechanoregulation of cell behavior. A better understanding of the molecular mechanisms that link mechanical stimuli to transcriptional control guiding cell differentiation will lead to new ideas about how to effectively prime stem cells for tissue engineering and regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2(2):73–85.

    PubMed  Google Scholar 

  2. Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab. 2000;18(6):305–16.

    PubMed  Google Scholar 

  3. Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryo Today. 2010;90(3):203–13. doi:10.1002/bdrc.20184.

    PubMed  Google Scholar 

  4. Farge E. Mechanotransduction in development. Curr Top Dev Biol. 2011;95:243–65. doi:10.1016/b978-0-12-385065-2.00008-6.

    PubMed  Google Scholar 

  5. Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci. 2012;125(Pt 13):3061–73. doi:10.1242/jcs.093005.

    PubMed  Google Scholar 

  6. • Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, Derda R, et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev Cell. 2011;21(4):758–69. doi:10.1016/j.devcel.2011.07.006. A key paper in advancing our understanding of how mechanical changes are integrated with molecular mechanisms of development. Demonstrates that change in cell shape (cytoskeleton) is a necessary step in signalling from ectoderm to mesoderm and induction of tooth bud formation.

    PubMed  Google Scholar 

  7. Aigouy B, Farhadifar R, Staple DB, Sagner A, Roper JC, Julicher F, et al. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell. 2010;142(5):773–86. doi:10.1016/j.cell.2010.07.042.

    PubMed  Google Scholar 

  8. Olguin P, Glavic A, Mlodzik M. Intertissue mechanical stress affects frizzled-mediated planar cell polarity in the Drosophila notum epidermis. Curr Biol. 2011;21(3):236–42. doi:10.1016/j.cub.2011.01.001.

    PubMed  Google Scholar 

  9. Hinchliffe JR, Johnson DR. The development of the vertebrate limb an approach through experiment, genetics and evolution. Oxford University Press. 1980; p 72–83.

  10. Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48. doi:10.1002/bdrc.20050.

    PubMed  Google Scholar 

  11. Pitsillides AA, Ashhurst DE. A critical evaluation of specific aspects of joint development. Dev Dyn. 2008;237(9):2284–94. doi:10.1002/dvdy.21654.

    PubMed  Google Scholar 

  12. Roddy KA, Nowlan NC, Prendergast PJ, Murphy P. 3D representation of the developing chick knee joint: a novel approach integrating multiple components. J Anat. 2009;214(3):374–87. doi:10.1111/j.1469-7580.2008.01040.x.

    PubMed  Google Scholar 

  13. Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73. doi:10.1016/j.ydbio.2008.01.012.

    PubMed  Google Scholar 

  14. Hyde G, Dover S, Aszodi A, Wallis GA, Boot-Handford RP. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol. 2007;304(2):825–33. doi:10.1016/j.ydbio.2007.01.026.

    PubMed  Google Scholar 

  15. Onyekwelu I, Goldring MB, Hidaka C. Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem. 2009;107(3):383–92. doi:10.1002/jcb.22149.

    PubMed  Google Scholar 

  16. Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development. 1998;125(20):4019–32.

    PubMed  Google Scholar 

  17. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics. 2010;9(11):2482–96. doi:10.1074/mcp.M110.002113.

    PubMed  Google Scholar 

  18. Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, et al. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell. 2009;17(6):861–73. doi:10.1016/j.devcel.2009.10.010.

    PubMed  Google Scholar 

  19. Rodriguez JI, Palacios J, Garcia-Alix A, Pastor I, Paniagua R. Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif Tissue Int. 1988;43(6):335–9.

    PubMed  Google Scholar 

  20. •• Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromized skeletal muscle formation. Bone. 2010;46(5):1275–85. doi:10.1016/j.bone.2009.11.026. Establishes that mouse embryos developing in the absence of muscle contractions (Muscleless and reduced muscle) have abnormal ossification, joint formation, and morphogenesis of rudiment shape.

    PubMed  Google Scholar 

  21. Nowlan NC, Murphy P, Prendergast PJ. A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones. J Biomech. 2008;41(2):249–58. doi:10.1016/j.jbiomech.2007.09.031.

    PubMed  Google Scholar 

  22. Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol. 2008;4(12):e1000250. doi:10.1371/journal.pcbi.1000250.

    PubMed  Google Scholar 

  23. •• Roddy KA, Prendergast PJ, Murphy P. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular, and computational analysis of immobilized embryos. PLoS One. 2011;6(2):e17526. doi:10.1371/journal.pone.0017526. Chick embryos immobilized in ovo by a neuromuscular blocking agent were analyzed, specifically to reveal impacts on knee joint formation. 3D imaging and gene expression analysis revealed that organized tissue territories in the forming joint region are lost and the morphogenesis of rudiment shape is affected.

    PubMed  Google Scholar 

  24. Rot-Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrímsson B, Hall BK, et al. Myf5–/–:MyoD–/– amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol. 2006;216(1):1–9.

    PubMed  Google Scholar 

  25. Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, et al. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat. 2007;210(3):259–71. doi:10.1111/j.1469-7580.2007.00698.x.

    PubMed  Google Scholar 

  26. •• Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138(15):3247–59. doi:10.1242/dev.063768. Evidence that the removal of muscle contractions leads to a change in the normal asymmetric pattern of bone mineral deposition and to mechanically inferior bones.

    PubMed  Google Scholar 

  27. Germiller JA, Goldstein SA. Structure and function of embryonic growth plate in the absence of functioning skeletal muscle. J Orthop Res. 1997;15(3):362–70. doi:10.1002/jor.1100150308.

    PubMed  Google Scholar 

  28. •• Shwartz Y, Farkas Z, Stern T, Aszodi A, Zelzer E. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension. Dev Biol. 2012;370(1):154–63. doi:10.1016/j.ydbio.2012.07.026. Evidence for the role of mechanical stimulation from muscle contraction in zebrafish skeletal development. Reveals an impact on chondrocyte shape and columnar organization in zebrafish and on chondrocte intercalation in the growth plate of muscle-less mouse embryos.

    PubMed  Google Scholar 

  29. Kim IS, Otto F, Zabel B, Mundlos S. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999;80(2):159–70.

    PubMed  Google Scholar 

  30. Drachman DB, Sokoloff L. The role of movement in embryonic joint development. Dev Biol. 1966;14:401–20.

    Google Scholar 

  31. Murray PD, Drachman DB. The role of movement in the development of joints and related structures: the head and neck in the chick embryo. J Embryol Exp Morphol. 1969;22(3):349–71.

    PubMed  Google Scholar 

  32. Osborne AC, Lamb KJ, Lewthwaite JC, Dowthwaite GP, Pitsillides AA. Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact. 2002;2(5):448–56.

    PubMed  Google Scholar 

  33. Persson M. The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat. 1983;137(Pt 3):591–9.

    PubMed  Google Scholar 

  34. Ruano-Gil D, Nardi-Vilardaga J, Tejedo-Mateu A. Influence of extrinsic factors on the development of the articular system. Acta Anat (Basel). 1978;101(1):36–44.

    Google Scholar 

  35. •• Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16(5):734–43. doi:10.1016/j.devcel.2009.04.013. Describes the effects of lack of muscle and immobile muscle on forming joints. Demonstrates that joint formation fails in particular sites and that the canonical Wnt pathway is implicated in the response to muscle contractions.

    PubMed  Google Scholar 

  36. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993;75(7):1351–9.

    PubMed  Google Scholar 

  37. Laurin M, Fradet N, Blangy A, Hall A, Vuori K, Cote JF. The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc Natl Acad Sci U S A. 2008;105(40):15446–51. doi:10.1073/pnas.0805546105.

    PubMed  Google Scholar 

  38. • Roddy KA, Kelly GM, van Es MH, Murphy P, Prendergast PJ. Dynamic patterns of mechanical stimulation co-localize with growth and cell proliferation during morphogenesis in the avian embryonic knee joint. J Biomech. 2011. doi:10.1016/j.jbiomech.2010.08.039. A finite element simulation of a flexion-extension contraction cycle at the knee joint was informed by 3D imaging of developing embryo limbs and predicted the biophysical stimuli generated in different regions of the presumptive joint over time.

  39. Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004;18(19):2404–17. doi:10.1101/gad.1230704.

    PubMed  Google Scholar 

  40. Spater D, Hill TP, O'Sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–49. doi:10.1242/dev.02471.

    PubMed  Google Scholar 

  41. •• Nowlan NC, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech Model Mechanobiol. 2012;11(1–2):207–19. doi:10.1007/s10237-011-0304-4. Finite element analysis suggested a possible explanation for the observed increased impact on the forelimb compared with hindlimb when mechanical stimulation from muscle contractions is absent; it predicted that passive movement generates greater stimulation of the hindlimb.

    PubMed  Google Scholar 

  42. Rot-Nikcevic I, Downing KJ, Hall BK, Kablar B. Development of the mouse mandibles and clavicles in the absence of skeletal myogenesis. Histol Histopathol. 2007;22(1):51–60.

    PubMed  Google Scholar 

  43. Solem RC, Eames BF, Tokita M, Schneider RA. Mesenchymal and mechanical mechanisms of secondary cartilage induction. Dev Biol. 2011;356(1):28–39. doi:10.1016/j.ydbio.2011.05.003.

    PubMed  Google Scholar 

  44. Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011;20(2):163–76. doi:10.1016/j.devcel.2011.01.001.

    PubMed  Google Scholar 

  45. Li Y, Dudley AT. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development. 2009;136(7):1083–92. doi:10.1242/dev.023820.

    PubMed  Google Scholar 

  46. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–6.

    PubMed  Google Scholar 

  47. Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005;328(3):658–65. doi:10.1016/j.bbrc.2004.11.068.

    PubMed  Google Scholar 

  48. Studer D, Millan C, Ozturk E, Maniura-Weber K, Zenobi-Wong M. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur Cell Mater. 2012;24:118–35. discussion 35.

    PubMed  Google Scholar 

  49. Pitsillides AA, Beier F. Cartilage biology in osteoarthritis‒lessons from developmental biology. Nat Rev Rheumatol. 2011;7(11):654–63. doi:10.1038/nrrheum.2011.129.

    PubMed  Google Scholar 

  50. Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998;280(5368):1455–7.

    PubMed  Google Scholar 

  51. Wu QQ, Chen Q. Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res. 2000;256(2):383–91. doi:10.1006/excr.2000.4847.

    PubMed  Google Scholar 

  52. Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell. 2008;15(3):470–7. doi:10.1016/j.devcel.2008.07.009.

    PubMed  Google Scholar 

  53. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10(1):21–33. doi:10.1038/nrm2593.

    PubMed  Google Scholar 

  54. Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 2010;9(1):82–8. doi:10.1038/nmat2563.

    PubMed  Google Scholar 

  55. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323(5914):638–41. doi:10.1126/science.1162912.

    PubMed  Google Scholar 

  56. Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 2011;30(12):2325–35. doi:10.1038/emboj.2011.157.

    PubMed  Google Scholar 

  57. Rot I, Kablar B. Role of skeletal muscle in palate development. Histol Histopathol. 2013;28(1):1–13.

    PubMed  Google Scholar 

  58. Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, et al. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs. 2010;192(3):158–66. doi:10.1159/000313399.

    PubMed  Google Scholar 

  59. Dickhut A, Pelttari K, Janicki P, Wagner W, Eckstein V, Egermann M, et al. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol. 2009;219(1):219–26. doi:10.1002/jcp.21673.

    PubMed  Google Scholar 

  60. Zuscik MJ, Baden JF, Wu Q, Sheu TJ, Schwarz EM, Drissi H, et al. 5-azacytidine alters TGF-beta and BMP signaling and induces maturation in articular chondrocytes. J Cell Biochem. 2004;92(2):316–31. doi:10.1002/jcb.20050.

    PubMed  Google Scholar 

  61. Farrell E, Both SK, Odorfer KI, Koevoet W, Kops N, O'Brien FJ, et al. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord. 2011;12:31. doi:10.1186/1471-2474-12-31.

    PubMed  Google Scholar 

  62. Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from 3-dimensional cell growth to biomimetics of in vivo development. Tissue Eng Part B Rev. 2009;15(4):381–94.

    PubMed  Google Scholar 

  63. Hellingman CA, Koevoet W, van Osch GJ. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach. J Tissue Eng Regen Med. 2012;6(10):e1–11. doi:10.1002/term.502.

    PubMed  Google Scholar 

  64. Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res Part C. 2010;90(1):75–85.

    Google Scholar 

  65. Responte DJ, Lee JK, Hu JC, Athanasiou KA. Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J. 2012;26(9):3614–24. doi:10.1096/fj.12-207241.

    PubMed  Google Scholar 

  66. Angele P, Schumann D, Angele M, Kinner B, Englert C, Hente R, et al. Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology. 2004;41(3–4):335–46.

    PubMed  Google Scholar 

  67. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007;25(3):655–63. doi:10.1634/stemcells.2006-0435.

    PubMed  Google Scholar 

  68. Thorpe SD, Buckley CT, Vinardell T, O'Brien FJ, Campbell VA, Kelly DJ. Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun. 2008;377(2):458–62. doi:10.1016/j.bbrc.2008.09.154.

    PubMed  Google Scholar 

  69. Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 2012;113(9):2806–12. doi:10.1002/jcb.24166.

    PubMed  Google Scholar 

  70. McMahon LA, Reid AJ, Campbell VA, Prendergast PJ. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann Biomed Eng. 2008;36(2):185–94. doi:10.1007/s10439-007-9416-5.

    PubMed  Google Scholar 

  71. Khayyeri H, Checa S, Tagil M, Prendergast PJ. Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J Orthop Res. 2009;27(12):1659–66. doi:10.1002/jor.20926.

    PubMed  Google Scholar 

  72. Carter DR, Orr TE, Fyhrie DP, Schurman DJ. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res. 1987;219:237–50.

    PubMed  Google Scholar 

  73. Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthopaed Relate Res. 1998;355(Suppl):S41–55.

    Google Scholar 

  74. Loboa EG, Beaupre GS, Carter DR. Mechanobiology of initial pseudarthrosis formation with oblique fractures. J Orthop Res. 2001;19(6):1067–72. doi:10.1016/s0736-0266(01)00028-6.

    PubMed  Google Scholar 

  75. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, et al. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res. 2003;21(3):451–7. doi:10.1016/s0736-0266(02)00230-9.

    PubMed  Google Scholar 

  76. Miyanishi K, Trindade MC, Lindsey DP, Beaupre GS, Carter DR, Goodman SB, et al. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 2006;12(6):1419–28. doi:10.1089/ten.2006.12.1419.

    PubMed  Google Scholar 

  77. Wagner DR, Lindsey DP, Li KW, Tummala P, Chandran SE, Smith RL, et al. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng. 2008;36(5):813–20. doi:10.1007/s10439-008-9448-5.

    PubMed  Google Scholar 

  78. Elder SH, Fulzele KS, McCulley WR. Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech Model Mechanobiol. 2005;3(3):141–6. doi:10.1007/s10237-004-0058-3.

    PubMed  Google Scholar 

  79. Ikenoue T, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, et al. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res. 2003;21(1):110–6. doi:10.1016/s0736-0266(02)00091-8.

    PubMed  Google Scholar 

  80. Miyanishi K, Trindade MC, Lindsey DP, Beaupre GS, Carter DR, Goodman SB, et al. Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng. 2006;12(8):2253–62. doi:10.1089/ten.2006.12.2253.

    PubMed  Google Scholar 

  81. Meyer EG, Buckley CT, Steward AJ, Kelly DJ. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. J Mech Behav Biomed Mater. 2011;4(7):1257–65. doi:10.1016/j.jmbbm.2011.04.012.

    PubMed  Google Scholar 

  82. Vinardell T, Rolfe RA, Buckley CT, Meyer EG, Ahearne M, Murphy P, et al. Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells. Eur Cell Mater. 2012;23:121–32. discussion 33–4.

    PubMed  Google Scholar 

  83. Carter DR, Wong M. Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci. 2003;358(1437):1461–71. doi:10.1098/rstb.2003.1346.

    PubMed  Google Scholar 

  84. Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology. 2008;149(12):6065–75. doi:10.1210/en.2008-0687.

    PubMed  Google Scholar 

  85. Haudenschild AK, Hsieh AH, Kapila S, Lotz JC. Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng. 2009;37(3):492–502. doi:10.1007/s10439-008-9629-2.

    PubMed  Google Scholar 

  86. Kearney EM, Farrell E, Prendergast PJ, Campbell VA. Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng. 2010;38(5):1767–79. doi:10.1007/s10439-010-9979-4.

    PubMed  Google Scholar 

  87. Connelly JT, Vanderploeg EJ, Mouw JK, Wilson CG, Levenston ME. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs. Tissue Eng Part A. 2010;16(6):1913–23. doi:10.1089/ten.TEA.2009.0561.

    PubMed  Google Scholar 

  88. Arnsdorf EJ, Tummala P, Jacobs CR. Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS One. 2009;4(4):e5388. doi:10.1371/journal.pone.0005388.

    PubMed  Google Scholar 

  89. Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR. Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci. 2009;122(Pt 4):546–53. doi:10.1242/jcs.036293.

    PubMed  Google Scholar 

  90. Sharp LA, Lee YW, Goldstein AS. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann Biomed Eng. 2009;37(3):445–53. doi:10.1007/s10439-008-9632-7.

    PubMed  Google Scholar 

  91. Gemmiti CV, Guldberg RE. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol Bioeng. 2009;104(4):809–20. doi:10.1002/bit.22440.

    PubMed  Google Scholar 

  92. da Silva ML A, Martins A, Costa-Pinto AR, Correlo VM, Sol P, Bhattacharya M, et al. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J Tissue Eng Regen Med. 2011;5(9):722–32. doi:10.1002/term.372.

    Google Scholar 

Download references

Conflicts of Interest

R Rolfe declares no conflicts of interest; K Roddy declares no conflicts of interest; and P Murphy declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolfe, R., Roddy, K. & Murphy, P. Mechanical Regulation of Skeletal Development. Curr Osteoporos Rep 11, 107–116 (2013). https://doi.org/10.1007/s11914-013-0137-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0137-4

Keywords

Navigation