Skip to main content

Advertisement

Log in

Signaling Pathways Affecting Skeletal Health

  • Evaluation and Management (M Kleerekoper, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Skeletal health is dependent on the balance between bone resorption and formation during bone remodeling. Multiple signaling pathways play essential roles in the maintenance of skeletal integrity by positively or negatively regulating bone cells. During the last years, significant advances have been made in our understanding of the essential signaling pathways that regulate bone cell commitment, differentiation and survival. New signaling anabolic pathways triggered by parathyroid hormone, local growth factors, Wnt signaling, and calcium sensing receptor have been identified. Novel signals induced by interactions between bone cells–matrix (integrins), osteoblasts/osteocytes (cadherins, connexins), and osteoblasts/osteoclast (ephrins, Wnt-RhoA, semaphorins) have been discovered. Recent studies revealed the key pathways (MAPK, PI3K/Akt) that critically control bone cells and skeletal mass. This review summarizes the most recent knowledge on the major signaling pathways that control bone cells, and their potential impact on the development of therapeutic strategies to improve human bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40:1434–46.

    Article  PubMed  CAS  Google Scholar 

  2. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146:4577–83.

    Article  PubMed  CAS  Google Scholar 

  3. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37:148–58.

    Article  PubMed  CAS  Google Scholar 

  4. Robling AG, Kedlaya R, Ellis SN, Childress PJ, Bidwell JP, Bellido T, et al. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelope-specific attenuation of skeletal effects in Sost-deficient mice. Endocrinology. 2011;152:2963–75.

    Article  PubMed  CAS  Google Scholar 

  5. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26:1035–46.

    Article  PubMed  CAS  Google Scholar 

  6. Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ, et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11:161–71.

    Article  PubMed  CAS  Google Scholar 

  7. Bedi B, Li JY, Tawfeek H, Baek KH, Adams J, Vangara SS, et al. Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci U S A. 2012;109:E725–33.

    Google Scholar 

  8. Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 2008;22:2968–79.

    Article  PubMed  CAS  Google Scholar 

  9. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem. 2006;281:9971–6.

    Article  PubMed  CAS  Google Scholar 

  10. Wu JY, Aarnisalo P, Bastepe M, Sinha P, Fulzele K, Selig MK, et al. Gsalpha enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest. 2011;121:3492–504.

    Article  PubMed  CAS  Google Scholar 

  11. Jilka RL, Almeida M, Ambrogini E, Han L, Roberson PK, Weinstein RS, et al. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell. 2010;9:851–67.

    Article  PubMed  CAS  Google Scholar 

  12. Fei Y, Hurley MM. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol. 2012. doi:10.1002/jcp.24075.

  13. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.

    Article  PubMed  CAS  Google Scholar 

  14. • Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135:825–37. Reports a novel mechanism by which bone formation is controlled by Lrp5-mediated serotonin production in the duodenum..

    Article  PubMed  CAS  Google Scholar 

  15. Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010;191:7–13.

    Article  PubMed  CAS  Google Scholar 

  16. Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 2010;16:308–12.

    Article  PubMed  CAS  Google Scholar 

  17. Inose H, Zhou B, Yadav VK, Guo XE, Karsenty G, Ducy P. Efficacy of serotonin inhibition in mouse models of bone loss. J Bone Miner Res. 2011;26:2002–11.

    Article  PubMed  CAS  Google Scholar 

  18. • Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17:684–91. Reports a number of genetic studies supporting a functional role of Lrp5 in bone to control bone mass..

    Article  PubMed  CAS  Google Scholar 

  19. Goltzman D. LRP5, serotonin, and bone: complexity, contradictions, and conundrums. J Bone Miner Res. 2011;26:1997–2001.

    Article  PubMed  CAS  Google Scholar 

  20. Collet C, Schiltz C, Geoffroy V, Maroteaux L, Launay JM, de Vernejoul MC. The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB J. 2008;22:418–27.

    Article  PubMed  CAS  Google Scholar 

  21. Chabbi-Achengli Y, Coudert AE, Callebert J, Geoffroy V, Cote F, Collet C, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S A. 2012;109:2567–72.

    Article  PubMed  CAS  Google Scholar 

  22. Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res. 2010;25:2138–47.

    Article  PubMed  CAS  Google Scholar 

  23. Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone. 2012;50:477–89.

    Article  PubMed  CAS  Google Scholar 

  24. Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19:319–38.

    Article  PubMed  CAS  Google Scholar 

  25. • Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50:209–17. Reports the essential roles of the Wnt inhibitor Sost and Wnt signaling in the anabolic effect of mechanical forces on bone..

    Article  PubMed  CAS  Google Scholar 

  26. Marsell R, Sisask G, Nilsson Y, Sundgren-Andersson AK, Andersson U, Larsson S, et al. GSK-3 inhibition by an orally active small molecule increases bone mass in rats. Bone. 2012;50:619–27.

    Article  PubMed  CAS  Google Scholar 

  27. Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, et al. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci U S A. 2011;108:17022–7.

    Article  PubMed  CAS  Google Scholar 

  28. Glantschnig H, Scott K, Hampton R, Wei N, McCracken P, Nantermet P, et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther. 2011;338:568–78.

    Article  PubMed  CAS  Google Scholar 

  29. • Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24:578–88. Reports the positive effects of pharmacological inhibition of sclerostin on bone formation and bone mass in osteopenic rats..

    Article  PubMed  CAS  Google Scholar 

  30. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  31. Lowery JW, Pazin D, Intini G, Kokabu S, Chappuis V, Capelo LP, et al. The role of BMP2 signaling in the skeleton. Crit Rev Eukaryot Gene Expr. 2011;21:177–85.

    Article  PubMed  CAS  Google Scholar 

  32. Mishina Y, Starbuck MW, Gentile MA, Fukuda T, Kasparcova V, Seedor JG, et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem. 2004;279:27560–6.

    Article  PubMed  CAS  Google Scholar 

  33. Kamiya N, Kobayashi T, Mochida Y, Yu PB, Yamauchi M, Kronenberg HM, et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res. 2010;25:200–10.

    Article  PubMed  CAS  Google Scholar 

  34. Okamoto M, Murai J, Imai Y, Ikegami D, Kamiya N, Kato S, et al. Conditional deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, increasing volume of remodeling bone in mice. J Bone Miner Res. 2011;26:2511–22.

    Article  PubMed  CAS  Google Scholar 

  35. Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006;7:51–65.

    Article  PubMed  CAS  Google Scholar 

  36. Ono M, Inkson CA, Kilts TM, Young MF. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J Bone Miner Res. 2011;26:193–208.

    Article  PubMed  CAS  Google Scholar 

  37. Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005;26:743–74.

    Article  PubMed  CAS  Google Scholar 

  38. Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O’Quinn EC, et al. Inhibition of TGF-beta signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res. 2010;25:2419–26.

    Article  PubMed  CAS  Google Scholar 

  39. Nicks KM, Perrien DS, Akel NS, Suva LJ, Gaddy D. Regulation of osteoblastogenesis and osteoclastogenesis by the other reproductive hormones, Activin and Inhibin. Mol Cell Endocrinol. 2009;310:11–20.

    Article  PubMed  CAS  Google Scholar 

  40. Eijken M, Swagemakers S, Koedam M, Steenbergen C, Derkx P, Uitterlinden AG, et al. The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J. 2007;21:2949–60.

    Article  PubMed  Google Scholar 

  41. • Lotinun S, Pearsall RS, Davies MV, Marvell TH, Monnell TE, Ucran J, et al. A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone. 2010;46:1082–8. Reports that am ActRIIA soluble receptor that prevents signaling through the endogenous activin receptor decreases bone resorption and increases bone formation, leading to enhanced mechanical strength and bone quality..

    Article  PubMed  CAS  Google Scholar 

  42. Lotinun S, Pearsall RS, Horne WC, Baron R. Activin receptor signaling: a potential therapeutic target for osteoporosis. Curr Mol Pharmacol. 2012.

  43. Schneider MR, Sibilia M, Erben RG. The EGFR network in bone biology and pathology. Trends Endocrinol Metab. 2009;20:517–24.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang X, Tamasi J, Lu X, Zhu J, Chen H, Tian X, et al. Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo. J Bone Miner Res. 2011;26:1022–34.

    Article  PubMed  CAS  Google Scholar 

  45. Schneider MR, Mayer-Roenne B, Dahlhoff M, Proell V, Weber K, Wolf E, et al. High cortical bone mass phenotype in betacellulin transgenic mice is EGFR dependent. J Bone Miner Res. 2009;24:455–67.

    Article  PubMed  CAS  Google Scholar 

  46. Schneider MR, Dahlhoff M, Andrukhova O, Grill J, Glosmann M, Schuler C, et al. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone. Bone. 2012;50:237–44.

    Article  PubMed  CAS  Google Scholar 

  47. Marie PJ, Miraoui H, Severe N. FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors. 2012;30(2):117–23.

    Google Scholar 

  48. Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem. 2009;284:4897–904.

    Article  PubMed  CAS  Google Scholar 

  49. Fei Y, Xiao L, Doetschman T, Coffin DJ, Hurley MM. Fibroblast growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the wnt signaling pathway. J Biol Chem. 2011;286:40575–83.

    Article  PubMed  CAS  Google Scholar 

  50. Govoni KE. Insulin-like growth factor-I molecular pathways in osteoblasts: potential targets for pharmacological manipulation. Curr Mol Pharmacol. 2012.

  51. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277:44005–12.

    Article  PubMed  CAS  Google Scholar 

  52. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141:2674–82.

    Article  PubMed  CAS  Google Scholar 

  53. Yakar S, Canalis E, Sun H, Mejia W, Kawashima Y, Nasser P, et al. Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res. 2009;24:1481–92.

    Article  PubMed  CAS  Google Scholar 

  54. Kesavan C, Wergedal JE, Lau KH, Mohan S. Conditional disruption of IGF-I gene in type 1alpha collagen-expressing cells shows an essential role of IGF-I in skeletal anabolic response to loading. Am J Physiol Endocrinol Metab. 2011;301:E1191–7.

    Article  PubMed  CAS  Google Scholar 

  55. Kawai M, Breggia AC, DeMambro VE, Shen X, Canalis E, Bouxsein ML, et al. The heparin-binding domain of IGFBP-2 has insulin-like growth factor binding-independent biologic activity in the growing skeleton. J Biol Chem. 2011;286:14670–80.

    Article  PubMed  CAS  Google Scholar 

  56. Miraoui H, Ringe J, Haupl T, Marie PJ. Increased EGF- and PDGF{alpha}-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet. 2010;19(9):1678–89.

    Article  PubMed  CAS  Google Scholar 

  57. Miraoui H, Marie PJ. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal. 2010;3(146):re9.

    Article  PubMed  Google Scholar 

  58. • Sévère N, Miraoui H, Marie PJ. The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem. 2011;286:24443–50. Reports the first demonstration that inhibition of Cbl interaction with specific receptor tyrosine kinases results in increased osteogenic differentiation of osteoblast progenitor cells..

    Article  PubMed  Google Scholar 

  59. Brennan T, Adapala NS, Barbe MF, Yingling V, Sanjay A. Abrogation of Cbl-PI3K interaction increases bone formation and osteoblast proliferation. Calcif Tissue Int. 2011;89:396–410.

    Google Scholar 

  60. • Adapala NS, Barbe MF, Langdon WY, Nakamura MC, Tsygankov AY, Sanjay A. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival. J Biol Chem. 2011;285:36745–58. Reports that binding of Cbl to PI3K negatively regulates osteoclast differentiation, survival, and signaling events..

    Article  Google Scholar 

  61. Guntur AR, Rosen CJ. The skeleton: a multi-functional complex organ: new insights into osteoblasts and their role in bone formation: the central role of PI3Kinase. J Endocrinol. 2011;211:123–30.

    Article  PubMed  CAS  Google Scholar 

  62. Ling L, Dombrowski C, Foong KM, Haupt LM, Stein GS, Nurcombe V, et al. Synergism between Wnt3a and heparin enhances osteogenesis via a phosphoinositide 3-kinase/Akt/RUNX2 pathway. J Biol Chem. 2010;285:26233–44.

    Article  PubMed  CAS  Google Scholar 

  63. Wu X, Chen S, Orlando SA, Yuan J, Kim ET, Munugalavadla V, et al. p85alpha regulates osteoblast differentiation by cross-talking with the MAPK pathway. J Biol Chem. 2011;286:13512–21.

    Article  PubMed  CAS  Google Scholar 

  64. Liu X, Bruxvoort KJ, Zylstra CR, Liu J, Cichowski R, Faugere MC, et al. Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci U S A. 2007;104:2259–64.

    Article  PubMed  CAS  Google Scholar 

  65. Mukherjee A, Rotwein P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol Cell Biol. 2012;32:490–500.

    Article  PubMed  CAS  Google Scholar 

  66. Moon JB, Kim JH, Kim K, Youn BU, Ko A, Lee SY, et al. Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J Immunol. 2012;188:163–9.

    Article  PubMed  CAS  Google Scholar 

  67. Kang H, Chang W, Hurley M, Vignery A, Wu D. Important roles of PI3Kgamma in osteoclastogenesis and bone homeostasis. Proc Natl Acad Sci U S A. 2010;107:12901–6.

    Article  PubMed  CAS  Google Scholar 

  68. Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT. Interactions between extracellular signal-regulated kinase 1/2 and P38 OPG pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res. 2012;27(3):538–51.

    Google Scholar 

  69. Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL, et al. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem. 2010;285:31985–94.

    Article  PubMed  CAS  Google Scholar 

  70. • Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120:2457–73. Reports the important role of the MAPK p38β signaling in bone formation in vivo and suggests that selective p38β agonists may prevent bone loss associated with osteoporosis..

    Article  PubMed  CAS  Google Scholar 

  71. Whitehouse CA, Waters S, Marchbank K, Horner A, McGowan NW, Jovanovic JV, et al. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci U S A. 2010;107:12913–8.

    Article  PubMed  CAS  Google Scholar 

  72. Chen JR, Lazarenko OP, Wu X, Kang J, Blackburn ML, Shankar K, et al. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/beta-catenin canonical Wnt signaling. J Bone Miner Res. 2010;25:2399–411.

    Article  PubMed  CAS  Google Scholar 

  73. Caverzasio J, Manen D. Essential role of Wnt3a-mediated activation of mitogen-activated protein kinase p38 for the stimulation of alkaline phosphatase activity and matrix mineralization in C3H10T1/2 mesenchymal cells. Endocrinology. 2007;148:5323–30.

    Article  PubMed  CAS  Google Scholar 

  74. Chang W, Tu C, Chen TH, Bikle D, Shoback D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal. 2008;1:ra1.

    Article  PubMed  Google Scholar 

  75. Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46:571–6.

    Article  PubMed  CAS  Google Scholar 

  76. •• Dvorak-Ewell MM, Chen TH, Liang N, Garvey C, Liu B, Tu C, et al. Osteoblast extracellular Ca2+-sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res. 2011;26:2935–47. Reports the important role of CaR signaling in the regulation of bone remodeling..

    Article  PubMed  CAS  Google Scholar 

  77. Xue Y, Xiao Y, Liu J, Karaplis AC, Pollack MR, Brown EM, et al. The calcium sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am J Physiol Endocrinol Metab. 2012;302(7):E841–51.

    Google Scholar 

  78. Marie PJ. Strontium ranelate in osteoporosis and beyond: identifying molecular targets in bone cell biology. Mol Interv. 2010;10:305–12.

    Article  PubMed  CAS  Google Scholar 

  79. Fromigué O, Hay E, Barbara A, Petrel C, Traiffort E, Ruat M, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med. 2009;13:2189–99.

    Article  PubMed  Google Scholar 

  80. Fromigué O, Hay E, Barbara A, Marie PJ. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem. 2010;285:25251–8.

    Article  PubMed  Google Scholar 

  81. Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, et al. Strontium ranelate decreases RANKL-induced osteoclastic differentiation in vitro: involvement of the calcium sensing receptor. Mol Pharmacol. 2010;78(4):569–76.

    Article  PubMed  CAS  Google Scholar 

  82. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, et al. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem. 2009;284:575–84.

    Article  PubMed  CAS  Google Scholar 

  83. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157:1291–300.

    Article  PubMed  CAS  Google Scholar 

  84. Peng S, Liu XS, Zhou G, Li Z, Luk KD, Guo XE, et al. Osteoprotegerin deficiency attenuates strontium-mediated inhibition of osteoclastogenesis and bone resorption. J Bone Miner Res. 2011;26(6):1272–82.

    Article  PubMed  CAS  Google Scholar 

  85. Reginster JY, Bruyere O. Collette J. Bone: Strontium ranelate treatment increases osteoprotegerin serum levels in postmenopausal osteoporotic women; 2012;50(5):1201–2.

    Google Scholar 

  86. Marie PJ. Bone cell–matrix protein interactions. Osteoporos Int. 2009;20:1037–42.

    Article  PubMed  CAS  Google Scholar 

  87. • Hamidouche Z, Fromigué O, Ringe J, Haupl T, Vaudin P, Pages JC, et al. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A. 2009;106:18587–91. Establishes that the α5 integrin is required for osteoblast differentiation and provides a targeted strategy to promote osteoblastogenesis for bone repair..

    Article  PubMed  CAS  Google Scholar 

  88. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, et al. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A. 2012;109:3359–64.

    Article  PubMed  CAS  Google Scholar 

  89. Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A. 2008;105:15767–72.

    Article  PubMed  CAS  Google Scholar 

  90. •• Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012;18:456–62. Reports the interest of using a peptidomimetic ligand (LLP2A) against integrin α4β1 to target mesenchymal cells and increase bone formation and bone mass..

    Article  PubMed  CAS  Google Scholar 

  91. Di Benedetto A, Watkins M, Grimston S, Salazar V, Donsante C, Mbalaviele G, et al. N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci. 2010;123:2640–8.

    Article  PubMed  Google Scholar 

  92. Haÿ E, Laplantine E, Geoffroy V, Frain M, Kohler T, Muller R, et al. N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol. 2009;29:953–64.

    Article  PubMed  Google Scholar 

  93. Haÿ E, Nouraud A, Marie PJ. N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signaling. PLoS One. 2009;4:e8284.

    Article  PubMed  Google Scholar 

  94. Guntur AR, Rosen CJ, Naski MC. N-cadherin adherens junctions mediate osteogenesis through PI3K signaling. Bone. 2012;50:54–62.

    Article  PubMed  CAS  Google Scholar 

  95. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res. 2012;27(2):374–89.

    Google Scholar 

  96. Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S, et al.. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One. 2011;6:e23516.

    Google Scholar 

  97. Matsuo K. Eph and ephrin interactions in bone. Adv Exp Med Biol. 2010;658:95–103.

    Article  PubMed  CAS  Google Scholar 

  98. •• Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, et al. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem. 2009;284:14637–44. Reports the essential role of ephrinA2-EphA2 bidirectional signaling in the control of osteoclastogenesis and osteoblastogenesis..

    Article  PubMed  CAS  Google Scholar 

  99. •• Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 2012;18:405–12. Reports the important role of the Wnt5a-Ror2 pathway in osteoclastogenesis..

    Article  PubMed  CAS  Google Scholar 

  100. •• Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80. Reports a novel role for Sema4D-Plexin-B1signaling in bone formation and its potential interest as a target to treat bone loss..

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of interest: P.J. Marie: has received honoraria from Servier in relation to participation in Advisory Board, consultancies, and lectures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Marie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marie, P.J. Signaling Pathways Affecting Skeletal Health. Curr Osteoporos Rep 10, 190–198 (2012). https://doi.org/10.1007/s11914-012-0109-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0109-0

Keywords

Navigation