Skip to main content

Advertisement

Log in

Role of Endocrine and Paracrine Factors in the Adaptation of Bone to Mechanical Loading

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

There appears to be no unique mechanically sensitive pathway by which changes in bone loading regulate bone mass and architecture to ensure adequate structural strength. Rather, strain-derived changes in bone cells activate a number of nonspecific strain-sensitive pathways (including calcium fluxes, prostanoids, nitric oxide, extracellular signal-regulated kinase, and sclerostin), the activities of which are modified by a number of factors (including estrogen receptors) for which this contribution is subsidiary to other purposes. The strain-sensitive pathways modified by these factors interact with a number of other pathways, some of which appear to have specific osteoregulatory potential (eg, the parathyroid hormone pathway), whereas others such as the Wnt pathway appear to be associated primarily with the response mechanisms of proliferation, differentiation, and apoptosis. The outcome of these multiple interactions are stimuli for local bone formation, resorption, or maintenance of the status quo, to maintain existing bone architecture or adapt it to a new mechanical regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lanyon LE, Sugiyama T, Price JS. Regulation of bone mass: local control or systemic influence or both? IBMS BoneKEy. 2009;6:218–26.

    Article  Google Scholar 

  2. Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone. 2010;46:314–21.

    Article  PubMed  Google Scholar 

  3. Lanyon LE, Armstrong VJ, Saxon LK, et al. Estrogen receptors critically regulate bone's adaptive responses to loading. Clinic Rev Bone Miner Metab. 2007;5:234–48.

    Article  CAS  Google Scholar 

  4. Skerry TM. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008;473:117–23.

    Article  PubMed  CAS  Google Scholar 

  5. Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal. 2009;21:1245–54.

    Article  PubMed  CAS  Google Scholar 

  6. Sugiyama T, Saxon LK, Zaman G, et al. Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1–34) on trabecular and cortical bone in mice. Bone. 2008;43:238–48.

    Article  PubMed  CAS  Google Scholar 

  7. Weinstein RS, Jilka RL, Almeida M, et al. Intermittent parathyroid hormone administration counteracts the adverse effects of glucocorticoids on osteoblast and osteocyte viability, bone formation, and strength in mice. Endocrinology. 2010;151:2641–9.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang YL, Frangos JA, Chachisvilis M. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol. 2009;296:C1391–1399.

    Article  PubMed  CAS  Google Scholar 

  9. O'Brien CA, Plotkin LI, Galli C, et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS One. 2008;3:e2942.

    Article  PubMed  Google Scholar 

  10. Wan M, Yang C, Li J, et al. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev. 2008;22:2968–79.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki A, Ozono K, Kubota T, et al. PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3β in osteoblastic Saos-2 cells. J Cell Biochem. 2008;104:304–17.

    Article  PubMed  CAS  Google Scholar 

  12. Baron R, Rawadi G. Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep. 2007;5:73–80.

    Article  PubMed  Google Scholar 

  13. Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–85.

    Article  PubMed  CAS  Google Scholar 

  14. Armstrong VJ, Muzylak M, Sunters A, et al. Wnt/β-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α. J Biol Chem. 2007;282:20715–27.

    Article  PubMed  CAS  Google Scholar 

  15. Case N, Ma M, Sen B, et al. β-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem. 2008;283:29196–205.

    Article  PubMed  CAS  Google Scholar 

  16. Arnsdorf EJ, Tummala P, Jacobs CR. Non-canonical Wnt signaling and N-cadherin related β-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS One. 2009;4:e5388.

    Article  PubMed  Google Scholar 

  17. •• Sunters A, Armstrong VJ, Zaman G, et al.: Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor α-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of β-catenin signaling. J Biol Chem 2010, 285:8743–8758. Whereas β-catenin signaling is recognized to be a key regulator of bone’s adaptation to loading, the mechanisms by which it is activated in osteoblastic cells following mechanical strain are less clearly understood. This paper shows that β-catenin may be activated through a mechanism involving the IGF/AKT axis independently of canonical Wnts or LRP5 but involving ERα.

    Article  PubMed  CAS  Google Scholar 

  18. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: Implications for the study of mechanosensation in bone. Bone. 2010;47:872–81.

    Article  PubMed  CAS  Google Scholar 

  19. Kramer I, Loots GG, Studer A, et al. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res. 2010;25:178–89.

    Article  PubMed  CAS  Google Scholar 

  20. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75.

    Article  PubMed  CAS  Google Scholar 

  21. •• Lin C, Jiang X, Dai Z, et al.: Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J Bone Miner Res 2009, 24:1651–1661. While sclerostin expression had previously been demonstrated to be mechanically regulated, this paper attributes functional importance to this process by showing lack of unloading-induced bone loss in the absence of sclerostin expression. Furthermore, lack of unloading-induced changes in Wnt signaling in sclerostin knockout mice supports the supposition that sclerostin exerts its effects as an antagonist of Wnt signaling in vivo.

    Article  PubMed  CAS  Google Scholar 

  22. Gaudio A, Pennisi P, Bratengeier C, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 2010;95:2248–53.

    Article  PubMed  CAS  Google Scholar 

  23. Power J, Poole KE, van Bezooijen R, et al. Sclerostin and the regulation of bone formation: effects in hip osteoarthritis and femoral neck fracture. J Bone Miner Res. 2010;25:1867–76.

    Article  PubMed  CAS  Google Scholar 

  24. Ominsky MS, Vlasseros F, Jolette J, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25:948–59.

    Article  PubMed  CAS  Google Scholar 

  25. Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.

    Article  PubMed  CAS  Google Scholar 

  26. • Bonnet N, Standley KN, Bianchi EN, et al.: The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 2009, 284:35939–35950. This study shows that mechanical loading increases periostin expression, which is involved in the inhibition of Sost expression thereby up-regulating osteoblast function.

    Article  PubMed  CAS  Google Scholar 

  27. Modder UI, Clowes JA, Hoey K, et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res. 2011;26:27–34.

    Article  PubMed  CAS  Google Scholar 

  28. Mabilleau G, Mieczkowska A, Edmonds ME. Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet Med. 2010;27:925–32.

    Article  PubMed  CAS  Google Scholar 

  29. Lee K, Jessop H, Suswillo R, et al. Bone adaptation requires oestrogen receptor-α. Nature. 2003;424:389.

    Article  PubMed  CAS  Google Scholar 

  30. •• Callewaert F, Bakker A, Schrooten J, et al.: Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice. J Bone Miner Res 2010, 25:124–131. This study shows that AR activation limits the periosteal bone response to in vivo mechanical loading whereas testosterone administration and subsequent AR activation block the in vitro fluid flow-induced NO production. In addition, AR signaling following mechanical loading appears to be associated with changes in SOST/sclerostin signaling.

    Article  PubMed  CAS  Google Scholar 

  31. Aguirre JI, Plotkin LI, Gortazar AR, et al. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem. 2007;282:25501–8.

    Article  PubMed  CAS  Google Scholar 

  32. • Sugiyama T, Galea GL, Lanyon LE, Price JS: Mechanical loading-related bone gain is enhanced by tamoxifen but unaffected by fulvestrant in female mice. Endocrinology 2010, 151:5582–5590. This study provides experimental evidence to support the hypothesis that targeting specific ER actions with SERMs may stimulate bone gain, in a structurally appropriate manner, without adverse effects on other estrogen target tissues.

    Article  PubMed  CAS  Google Scholar 

  33. Zaman G, Saxon LK, Sunters A, et al. Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor α and disuse. Bone. 2010;46:628–42.

    Article  PubMed  CAS  Google Scholar 

  34. Liedert A, Wagner L, Seefried L, et al. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun. 2010;394:755–9.

    Article  PubMed  CAS  Google Scholar 

  35. Pomerants T, Tillmann V, Karelson K, et al. Impact of acute exercise on bone turnover and growth hormone/insulin-like growth factor axis in boys. J Sports Med Phys Fitness. 2008;48:266–71.

    PubMed  CAS  Google Scholar 

  36. Litzenberger JB, Tang WJ, Castillo AB, Jacobs CR. Deletion of β1 integrins from cortical osteocytes reduces load-induced bone formation. Cell Mol Bioeng. 2009;2:416–24.

    Article  CAS  Google Scholar 

  37. Phillips JA, Almeida EA, Hill EL, et al. Role for β1 integrins in cortical osteocytes during acute musculoskeletal disuse. Matrix Biol. 2008;27:609–18.

    Article  PubMed  CAS  Google Scholar 

  38. Yeh CR, Chiu JJ, Lee CI, et al. Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of β1-integrin. J Bone Miner Res. 2010;25:627–39.

    Article  PubMed  CAS  Google Scholar 

  39. Fritton JC, Myers ER, Wright TM, van der Meulen MC. Bone mass is preserved and cancellous architecture altered due to cyclic loading of the mouse tibia after orchidectomy. J Bone Miner Res. 2008;23:663–71.

    Article  PubMed  Google Scholar 

  40. Imai Y, Kondoh S, Kouzmenko A, Kato S. Regulation of bone metabolism by nuclear receptors. Mol Cell Endocrinol. 2009;310:3–10.

    Article  PubMed  CAS  Google Scholar 

  41. Kapur S, Amoui M, Kesavan C, et al. Leptin receptor (Lepr) is a negative modulator of bone mechanosensitivity and genetic variations in Lepr may contribute to the differential osteogenic response to mechanical stimulation in the C57BL/6J and C3H/HeJ pair of mouse strains. J Biol Chem. 2010;285:37607–18.

    Article  PubMed  CAS  Google Scholar 

  42. Kitase Y, Barragan L, Qing H, et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. J Bone Miner Res. 2010;25:2381–92.

    Article  CAS  Google Scholar 

  43. Kohrt WM, Barry DW, Van Pelt RE, et al. Timing of ibuprofen use and bone mineral density adaptations to exercise training. J Bone Miner Res. 2010;25:1415–22.

    Article  PubMed  CAS  Google Scholar 

  44. Grimston SK, Brodt MD, Silva MJ, Civitelli R. Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the connexin43 gene (Gja1). J Bone Miner Res. 2008;23:879–86.

    Article  PubMed  Google Scholar 

  45. Xia X, Batra N, Shi Q, et al. Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/β-catenin signaling. Mol Cell Biol. 2010;30:206–19.

    Article  PubMed  CAS  Google Scholar 

  46. Siller-Jackson AJ, Burra S, Gu S, et al. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem. 2008;283:26374–82.

    Article  PubMed  CAS  Google Scholar 

  47. Sen B, Styner M, Xie Z, et al. Mechanical loading regulates NFATc1 and β-catenin signaling through a GSK3β control node. J Biol Chem. 2009;284:34607–17.

    Article  PubMed  CAS  Google Scholar 

  48. Celil Aydemir AB, Minematsu H, Gardner TR, et al. Nuclear factor of activated T cells mediates fluid shear stress- and tensile strain-induced Cox2 in human and murine bone cells. Bone. 2010;46:167–75.

    Article  PubMed  CAS  Google Scholar 

  49. Srinivasan S, Ausk BJ, Prasad J, et al. Rescuing loading induced bone formation at senescence. PLoS Comput Biol. 2010;6:e1000924.

    Article  PubMed  Google Scholar 

  50. Kido S, Kuriwaka-Kido R, Umino-Miyatani Y, et al. Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts. PLoS One. 2010;5:e13090.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust. G.L. Galea and L.B. Meakin are recipients of Integrated Training Fellowships for Veterinarians from the Wellcome Trust.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna S. Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, J.S., Sugiyama, T., Galea, G.L. et al. Role of Endocrine and Paracrine Factors in the Adaptation of Bone to Mechanical Loading. Curr Osteoporos Rep 9, 76–82 (2011). https://doi.org/10.1007/s11914-011-0050-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-011-0050-7

Keywords

Navigation